Moshe Eliasof, Alessio Gravina, Andrea Ceni, Claudio Gallicchio, Davide Bacciu, Carola-Bibiane Schönlieb, "Graph Adaptive Autoregressive Moving Average Models", Proceedings of the 42 nd International Conference on Machine Learning, Vancouver, Canada. PMLR 267, 2025.
Abstract: Graph State Space Models (SSMs) have recently been introduced to enhance Graph Neural Networks (GNNs) in modeling long-range interactions. Despite their success, existing methods either compromise on permutation equivariance or limit their focus to pairwise interactions rather than sequences. Building on the connection between Autoregressive Moving Average (ARMA) and SSM, in this paper, we introduce GRAMA, a Graph Adaptive method based on a learnable ARMA framework that addresses these limitations. By transforming from static to sequential graph data, GRAMA leverages the strengths of the ARMA framework, while preserving permutation equivariance. Moreover, GRAMA incorporates a selective attention mechanism for dynamic learning of ARMA coefficients, enabling efficient and flexible long-range information propagation. We also establish theoretical connections between GRAMA and Selective SSMs, providing insights into its ability to capture long-range dependencies. Experiments on 26 synthetic and real-world datasets demonstrate that GRAMA consistently outperforms backbone models and performs competitively with state-of-the-art methods.

