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Abstract 

With proper "conceptual engineering," the concept of awareness presents a valuable pathway 

for the advancement of future artificial systems. 

Our starting point is that awareness is a solution to technical, environmental, but also 

theoretical and human challenges - with evidence from recent large-scale investments from 

the European Innovation Council (25 millions in 2022). Giving awareness to AI however is 

more than an implementation problem left to computer scientists and engineers, and engages 

also end-users, cognitive scientists, and ethicists. We identify four core topics to bring these 

communities together. 

1. Awareness brings system improvements : As the number of devices and systems increases, 

it is becoming more challenging to have central control over them, and it is essential to ensure 

that these agents can operate more locally and with more autonomy. Giving awareness to 

these agents can enhance their efficiency, resilience, and flexibility, allowing them to adapt to 

unforeseen situations and operate continuously - also saving costs and energy. Aware 

systems may also be easier to monitor and control. 

2. Awareness brings explanatory value: we explain why using the term "awareness" is better 

than others which are being discussed, especially machine consciousness or artificial 

sentience. We argue that awareness can capture emergent properties in the system, and is a 

way to simplify the interactions between humans and systems or make AI explainable. 

3. Awareness is measurable : we suggest that distinguishing dimensions of awareness (e.g. 

spatial, temporal, goal, self, group) offers a way to assess each system and compare systems, 

analogous to what is done for disorders of consciousness in humans, or awareness in non-

human animals. 

4. Awareness is a tractable ethical construct : the measurability (3) as well as the instrumental 

(1) and explanatory (2) value of the concept of awareness makes it possible to answer ethical 

questions about the relationship between humans and machines and the responsibilities that 

come with designing and deploying such systems. 

In this report we focus on point 3, providing a framework to measure changes in behaviour 

based on different dimensions of awareness. We show the framework could be used across 

use-cases present in the project, from soft robots and networks to swarm robotics and natural 

systems. 
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Introduction 

Awareness in artificial systems has the potential to make them easier to monitor, control, and 

more effective at their tasks. Understanding awareness, and engineering for awareness, 

requires us to have impartial metrics that can measure changes in behaviour based on 

different dimensions of awareness. In this deliverable we define methods to measure 

performance of a system based on its dimensions of awareness. We then show the framework 

could be used across use-cases present in the project, from soft robots and networks to swarm 

robotics and natural systems. 

Awareness cannot be measured directly: we introduce the terminology involved in the study 

of awareness, which together will allow us to evaluate awareness in a given context for any 

system.  

The main concepts in this study are: 

● Dimensions of awareness 

● Capacities and mechanisms 

● Performance metrics 

● Evaluation tasks 

In the rest of this section, we explain each concept and explain their relevance and relation to 

each other. The conceptual structure will give us a concrete approach to implement a measure 

of awareness in real-world use-case studies. 

State-of-the-art 

There is no standard approach to, or indeed existing framework for, the measurement of 

awareness across heterogeneous systems to the best of our knowledge. However, there exist 

measures for other qualities and traits of the various systems which we are interested in, 

discussed briefly in the following: 

● Animal systems 

For the animal literature there is an existing framework for comparing and measuring 

animal consciousness, across different species - which allows the species to vary 

across many dimensions. Birch et al (2020) [11] formulated this specifically with 

phenomenal consciousness in mind (subjective experience), not awareness as defined 

in this project. They pick up on the following dimensions: perceptual richness, 

evaluative richness, integration at a time, and across time, and self-consciousness. 

The dimensions are not expected to be uncorrelated, but are conceptually distinct from 

each other. Birch et al. propose investigating these dimensions by applying existing 

experimental paradigms such as mirror-mark, or trace conditioning paradigms. As 

awareness is distinct from consciousness, the dimensions under investigation will not 

map from this existing framework by Birch et al. unto the one proposed here. But, some 

of the suggested experimental paradigms and their framing in a multidimensional 

conceptual framework can function as a stepping stone for further development of the 

framework proposed here. Moreover, the experimental paradigms from the animal 

cognition literature can inform the tasks for investigating artificial awareness. D1.1 

provides more background on dimensions of awareness. 
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Figure 1: Hypothetical awareness profile for swarm robots, soft robots, networks and rhesus 

monkeys: each “spine” of the graph represents the axis of value for a different dimension of 

awareness. 

● Swarm robotics 

Traits defined in the swarm literature include robustness/fault tolerance [1, 2, 3, 4, 5, 6, 

7, 8, 9], scalability [5, 1, 3, 6, 10, 8, 2, 4] and adaptability/flexibility [3, 5, 1, 2]. However, 

there is a lack of precision in how such traits are defined with varying interpretations. 

There is currently no defined measure for awareness in swarms. In appendix A, we 

provide a set of metrics (Swarm Performance Indicators) which are formulated with 

reference to existing metrics and go towards examining the awareness of swarm robot 

systems. 

Terminology for Examining Awareness 

We use the following terminology to define different constructs related to awareness: 

● Dimensions of awareness: awareness does not vary along a single scale (more or 

less) but different directions. The term “dimensions” refers to the different aspects of 

awareness considered and corresponding scales (e.g. spatial, temporal, meta-

cognitive). The dimensions allow for comparison between different systems without 

assuming a single standard. We can draw comparisons between the dimensions of 

different systems in a non-linear, flexible manner. 

● Capacities: each dimension of awareness needs to be associated with underlying 

mechanisms or sets of processes, which are here referred to as “capacities”. A 

system can eventually operate with or without awareness, or with more or less 

awareness, and we expect differences in the exercise/operation of the system to 

show depending on the differences in awareness.  

● Mechanisms of awareness: refers to the general configuration or means through 

which a capacity operates. We follow here the definition of mechanism provided in 

cognitive sciences (“entities and activities organized such that they are productive of 

regular changes from start or set-up to finish or termination conditions”, Machamer, 

Darden, and Craver (2000) [12], p. 3) which allows for multiple physical realisations 

(e.g. different kinds of sensors, different materials) as this allows the conceptual 

framework to apply to multiple physical systems. 
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● Performance metrics: we can evaluate the performance of a system for a given task 

using defined metrics, and compare the performance on a given dimension when a 

capacity is present and when it is not. 

● Evaluation tasks: tasks chosen in order to evaluate the performance of the system 

with respect to selected capacities and the respective dimensions. The chosen task 

should be feasible with and without the capacity present. 

 

Figure 2: Framework to assess the awareness of a system. The aim is to measure the 

performance of a system on a task based on a change in their dimensions of awareness 

implemented using specific capacities.  
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Implementation process to assess awareness metrics 

Figure 1 lays out the steps needed to measure the performance of a system on a task given 

a change in their dimensions of awareness implemented using specific capacities: 

1. Awareness cannot be measured directly: instead we can evaluate the performance of 

the system with respect to associated capacities. 

2. In order to evaluate performance via defined metrics, we select tasks which allow for 

a differential in capacities of the system. 

3. Performance is evaluated via defined metrics: we evaluate the change in performance 

of the system with and without a capacity present for the selected task. Basic metrics 

might include robustness, adaptability, speed, for example. Metrics related to human 

systems/interactivity might include trust, explainability, responsibility. 

 

Summary 
 

The terminology introduced together with the structural relation between them provides a 

framework which we can apply in real-world use-case studies. In the following sections, we 

will discuss specific metrics for performance evaluation and finally, use-case studies for 

various systems across work packages.  
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Performance Metrics 

We define metrics to measure the performance of the system with respect to properties 

relevant to dimensions of awareness. The metrics are agnostic with respect to the dimension 

of awareness being assessed. We are interested in the difference in performance between a 

system with a capacity present and without. 

 

Example metrics 
 

Operation-related: 

● Speed: measures the speed of a system in completing a task. 

● Robustness: measures how well the system is able to function in a task when there 

are errors or faults present. 

● Adaptability: measures how well the system is able to function when there is a range 

of environments in the task. 

● Scalability: measures how well the system functions as it grows in scale (e.g. number 

of internal components, size of network, etc.). 

● Energy: measures the energy use of the system performing the task. 

● Autonomy: measures the ability of the system to act without external input to 

complete a task. 

 

Human-related: 

● Trust: measures how trustworthy the system is from a human operator’s perspective. 

● Explainability: measures how explainable the system is to a human operator. 

● Safety: measures how safe the system is for use in a human environment. 

 

Performance evaluation 
 

For a given set of capacities C = {ci}, we will evaluate performance with respect to each 

capacity independently.  

 

For a given metric M and task T, we evaluate three variables with respect to the selected 

capacity under evaluation, {ci}: 

 

● Optimal performance: Pp 

● Performance with ci present: Pm 

● Performance without any of the capacities in C present: Pn 

 

Performance is measured using metric M. In particular, “optimal” performance may be 

evaluated experimentally as the performance of the system when the optimal action policy is 

executed for a given task. This is the upper limit of performance attainable by the system. 

We assume that Pm > Pn, i.e. a capacity will always improve performance in the system. 

 

The quantity we are interested in is given by the equation: 
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P = (Pm - Pn) / (Pp - Pn) 

 

This gives us the change in performance with and without capacity, ci, with a normalising 

factor N = Pp - Pn. P has values in the range of 0 to 1. When P is small or close to 0, this 

indicates that the capacity ci has low benefit to the system in executing the task. When P is 

high or close to 1, this indicates that the capacity ci has large benefit to the performance of 

the system. 

 

Example of Implementation 

A robot is tasked with moving from point A to B in a room without colliding with obstacles. 

Researchers want to evaluate the performance P of the system in avoiding obstacles when 

given spatial awareness. Spatial awareness is implemented using two different capacities 

(camera and IR sensor). The performance metric used relates to the time taken to go from A 

to B. 

 

1. Set up obstacles in the arena. 

2. Calculate the best possible route and the best time the robot could take 

○ Optimal agent time = 5s, Pp = 1/5 = 0.2 

3. Disable both the camera and IR sensor to evaluate performance 

○ Time without camera nor IR sensor = 100s, Pn = 1/100 = 0.01 

4. Camera test:  

○ Test performance with only the camera working Pm 

○ Time with camera = 10s, Pm = 1/10 = 0.1 

○ Compute P = (0.1 - 0.01) / (0.2 - 0.01) = 0.48 

5. IR sensor test:  

○ Test performance with only the IR sensor working Pm 

○ Time with IR sensor = 6s, Pm = 1/6 = 0.17 

○ Compute P = (0.17 - 0.01) / (0.2 - 0.01) = 0.84 

 

Camera test result, P = 0.48 

IR test result, P = 0.84 

In conclusion, the IR sensor capacity is more beneficial to the performance of the robots in 

detecting obstacles, in this evaluation of spatial awareness. 
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Use-case Studies 

Swarm robots 
 

Goal 

We evaluate the spatial awareness of a system using the Distributed Situational Awareness 

capacity in a swarm logistics task. 

 

 

Figure 3: Left - A swarm of DOTS robots performing a logistics task (finding boxes and 

bringing them to the deposit area). Right - simulation of Distributed Situational Awareness, 

with DOTS robots estimating global locations of carriers with only local observations and 

message passing. 

 

Definitions 

Task: Find boxes and move them to the  deposit area on the left of the arena. 

Dimensions of awareness: Spatial 

Capacity: Distributed Situational Awareness (DSA) infers the swarm-centric global values of 

the location of boxes using only local observations and messaging. 

Mechanism: DSA is implemented by constructing a global and distributed frame-of-reference 

for the swarm using Gaussian Belief Propagation (GBP). Each robot gathers information 

about other nearby robot relative locations using the four perimeter cameras and constructs 

a local factor graph fragment. Local message passing implements the GBP algorithm 

achieving rapid convergence of the complete distributed factor graph, giving each robot 

knowledge of its global position within the swarm. This knowledge is used to track and 

communicate observed carrier locations.  

Performance metrics: 

● Speed 
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● Robustness 

● Adaptability 

● Scalability 

Note that metrics for robustness, adaptability, and scalability had not previously been 

defined for swarm systems. Appendix A provides a full definition of these metrics and 

demonstrates how they can be used in swarm use cases. We expect similar metrics 

can be used outside of swarm systems (e.g. robustness and adaptability), for example 

in the context of soft robotics or animal systems. 
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Soft robots 
 

Goal 

We evaluate object awareness of a system using the tactile sensing capacity in a grasping 

task. 

 

Figure 4: Adapted from: American Institute of Physics (2013), Tech Xplore [13]. 

Definitions 

Dimension of awareness: Object awareness 

Capacity: Tactile sensing 

Task: The soft manipulator should be able to identify and recognize different objects. The 

manipulator can then select an appropriate grasping approach for gripping the object. 

Performance metrics: 

● Stability 

● Speed 

● Energy 

● Safety  



 

 
WP5 Emergent awareness 

D5.1 Measuring emergent awareness 
 

 

 

 

  
 

Funded by the European Union under Grant Agreement 101070918. Views and opinions expressed are however those of the 

author(s) only and do not necessarily reflect those of the European Union or European Innovation Council and SMEs Executive 

Agency (EISMEA). Neither the European Union nor the granting authority can be held responsible for them. 

   
19 

 

 

Networks 
 

Goal: 

We evaluate the metacognition of a system using the confidence prediction capacity in an 

opt-out task designed for artificial neural networks. 

Definitions: 

Dimension: Meta-cognition 

Capacity: Confidence prediction 

The system should be able to independently determine whether or not it “feels” confident in 

predicting the target answer (e.g. a class) for a given input. The system can either reject the 

prediction (i.e., refusing to predict) or it can choose to predict. 

 

Figure 5: Image credit: Hampton (2001) [14]. 

Task: Opt-out task for artificial neural networks 

A network is trained to classify a fixed set of images / time-series. In particular, the definition 

of network in this example goes beyond the classical sense of implementation on a 

microcontroller but is inclusive of implementation via mechanical means, e.g. non-linear 

oscillators and archetypes. 

The network has the opportunity to “reject” the classification, thus refusing to predict. At the 

end of the training phase, the network is evaluated against a set of examples from the same 

classes seen during training. We expect the network to perform better when we allow it to 

reject, than when it is always forced to predict. 

Performance metrics: 

● Accuracy 
○ Accuracy of predictions when the network is forced to always predict 
○ Accuracy of predictions when the network is allowed to reject 

● Change in accuracy 
○ Change in accuracy for different rejection thresholds 
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Animals: Rhesus monkeys 

 

Goal 

 

We evaluate temporal awareness of a system using the working memory capacity in a 

match-to-sample task. 

Definitions 

Dimension: Temporal awareness 

Capacity: Working memory 

In a delayed matching-to-sample task, the animal is presented with a stimulus and after a  

delay period (during which the stimulus is not present), it has to pick from two comparison 

stimuli which was the one that matched the stimuli seen before the delay. Depending on the 

success this is followed by either reward or punishment (better versus lesser good food).  

 

Figure 6: Image credit: Porrino, L. J. et al. (2005) [15]. 

 

An opt-out can be introduced if needed, moves it to the meta-level (second-order 

awareness) see e.g.  https://www.pnas.org/doi/full/10.1073/pnas.071600998 

Task: Delayed Match-to-sample 

Performance: 

● Robustness 

● Adaptability 

● Autonomy 

● Speed 
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Discussion 

In this framework, we have presented: 

● The terminology required for examining dimensions of awareness. 

● The implementation process to apply the framework. 

● A performance measure which is evaluated via metrics to be defined. 

● Use-case examples demonstrating how the framework may be applied for selected 

dimensions of awareness and their associated capacities across four systems: 

swarm robots, soft robots, networks, and animals (rhesus monkeys). 

 

The following is a brief discussion of the considerations made in forming the framework and 

how it may be extended in future work. 

 

Comparisons of awareness 
 

The proposed framework is formulated to enable comparisons to be made between various 

systems, along various dimensions of awareness. The dimensions considered in the use-

cases are spatial, temporal, object awareness and metacognition. Another dimension that 

could be considered in the future might be situational or context awareness. By emphasising 

flexibility in the association of capacities to dimensions, and the choice of task on which to 

evaluate the system performance, it is made possible to do such inter-system comparisons. 

The dimensions as offered are not all operating on the same level, metacognitive awareness 

especially  may be considered a second-order dimension of awareness. As metacognition 

entails a system's awareness of its own ‘thought’ processes, this means  it is predicated on 

the system already possessing some prior awareness. 

 

It may also be possible to examine the “collective awareness” of a system, loosely defined 

here as the sum of performance scores with respect to a dimension of awareness across 

individuals in a system. This may go towards examining the “emergence” of awareness in 

collectives, where the overall collective awareness is greater than that of any individual. 

 

Comparing between varied systems 
 

In order to demonstrate the way in which the framework can be applied across very different 

(heterogeneous) systems, we have provided four use-case examples. These examples 

illustrate different dimensions of awareness and different associated capacities and tasks. It 

needs to be taken into account that although these systems might be rather different, the 

performance metrics need to be stable across all systems to ultimately allow for 

comparisons. The proposed framework therefore makes it possible to evaluate performance 

with the same set of metrics - to be specified for each use-case.  

 

The framework as currently formulated assumes the possibility of allowing for a delta in 

capacity, i.e. the option to test the system with and without the relevant capacity. For the 

human designed systems this will be achievable, however it needs to be noted that this is 

unlikely to apply to living systems, which form the theoretical basis for the framework. In 

biological systems isolating the various capacities under consideration from each other, and 
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investigating them independently is likely to be difficult to achieve, especially considering 

that awareness as a concept anticipates the possible interrelatedness (or at least interplay) 

of various capacities (and along various dimensions). Moreover, ‘turning off’ a capacity, 

although possible in artificial systems, would require knowing and isolating the relevant 

mechanisms (e.g. neural correlates) - which for most biological systems (especially non-

human animals) is not currently achievable.  

 

Aggregation of performance scores 
 

Aggregation over tasks 

 

In the framework, we assume that a single selected task is sufficient to evaluate 

performance with respect to a single capacity. In the case where a single task is not enough 

and multiple tasks are required to evaluate a capacity, multiple scores will be produced for 

each performance metric. These scores may then be aggregated by taking the mean score 

for each metric, for example, to produce a final performance score. 

 

Aggregation over metrics 

 

The first step in the process of implementation is selecting a dimension of awareness for 

examination. The final output are performance scores across metrics, evaluated with respect 

to the capacities associated with the dimension. In an extension to the framework, we may 

complete the process by aggregating scores over metrics to produce a single score for the 

initially selected dimension of awareness. This is an intuitive step to take but non-trivial, as 

the method of aggregation will need to be carefully considered. For example, we may 

produce an aggregate by taking a weighted sum of scores - but how should we determine 

the weights? If we are able to compute an aggregate that “makes sense” then this would 

allow us to directly compare the dimensions of awareness within a system. Should such a 

single score for a selected dimension become available, and if this can be done for all the 

dimensions under consideration, then we would have the system's awareness profile. Such 

an awareness profile would give a general overview of the systems awareness, and again 

allow for comparison between various systems (possibly both biological and artificial ones). 

A similar approach has been employed for frameworks of animal consciousness (e.g. Birch 

et al., 2020).   
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Figure 7: Extension to the process: a final step where we aggregate performance scores 

across metrics would allow us to compute a single score for each dimension of awareness in 

the system. Selection of aggregation method is non-trivial. 

 

Figure 8: Example of aggregation of performance metrics for single output score for object 

awareness. 

 

Next Steps 

As a first step, we aim to use this framework to measure the impact of different awareness 

capacities on performance, focussing on the swarm scenario. The swarm use-case is a 

logical starting point for application of the framework as it allows for flexible testing of a 

variety of capacities associated with the dimensions of awareness of interest. In addition, we 

have well-defined metrics for evaluating various properties of swarms (see appendix A) [16]. 

Finally, swarms have emergent properties, aligning therefore with the overall aim of WP5 to 

study emergent awareness.  The framework will be used to automatically optimise for 

performance of a swarm logistics task using dimensions of Spatial Awareness. In particular 

we will consider systems with different implementations of Distributed Spatial Awareness 

(DSA) including hard-coded capacities such as Gaussian Belief Propagation, and 
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automatically designed ones using artificial evolution. The result will be both an optimised 

behaviour, but also an optimised awareness selection process to achieve this behaviour. 

Conclusion 

Measuring awareness is critical to understand, and design for it. The different dimensions of 

awareness implemented on a system have the potential to improve the performance of the 

system. Another potential benefit would be improved interfacing with society, by enabling 

better understanding and increased control.   

In this deliverable we present a framework to assess the performance gain provided by 

different dimensions of awareness, and apply the framework to 4 use-cases relevant to the 

EMERGE. In the future we will apply this metric to both quantify awareness in our systems, 

and evolve solutions of systems based on awareness requirements. As a first step we 

provide a rich library of performance metrics which can be used to assess the awareness of 

swarm systems (scalability, robustness, and adaptability). 
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Appendix A - Swarm Performance Indicators 

Swarms have distributed control and so are assumed to inherently have superior 

robustness, scalability and adaptability compared to centralised multi-agent systems. 

However, these features have generally only been defined qualitatively and there is a lack of 

quantitative metrics and experiments to measure the claimed parameters. Swarm 

Performance Indicators are defined here as Key Performance Indicators for swarm features 

but can be applied to multi-agent systems with centralised control as well. These swarm 

features are metrics for robustness, fault tolerance, adaptability and scalability. We introduce 

Swarm Performance Indicators here towards use within the proposed framework as metrics 

for evaluating awareness. 

 

Introduction 
 

Swarm systems are a subset of multi-agent systems, which have distributed rather than 

centralised controllers. Distributed control means that the agent’s behaviour is based on 

local sensing and communication. Distributed control does not use globally available 

information and does not have a leader who gives instructions, such as planning path way-

points to reach. The benefits of distributed control in a group of agents are: redundancy [1]; 

ability to scale to high numbers without increasing the complexity of control [2]; and the 

ability to self-organise [3]. These benefits are extrapolated by researchers to incorrectly state 

their swarm systems are inherently robust to failures, scalable to large numbers and 

adaptable to environmental changes. However, a number of researchers have pointed out 

the issues with assuming these traits are automatic in swarms [1, 4] without further evidence 

or description. For example, what types of failures is a system robust to? How much 

performance can a system lose under faults before it is deemed not to be robust? It is not 

enough to call a system robust without first defining the meaning and to what the system is 

tolerant to and what its limits are therein [5]. Similarly, the extent of scalability is rarely 

discussed when asserting it for a given swarm platform or behaviour. Scalability can be 

defined as an ability to scale up and down in size without detriment to the performance of the 

swarm [6], or as the superlinearity of swarm performance with increased swarm size [7]. 

Finally, adaptability to changes in the environment or task is asserted as a given in a swarm 

system, due to self-organisation. It is true that self-organisation can cause good Adaptability 

to changes in the surroundings, but the extent to which this is true and how to measure it is 

not defined. 

 

To bring swarm robotic solutions into real-world use, it is necessary to create metrics for 

their 

benefits of robustness/fault tolerance, scalability and adaptability, which we term Swarm Per- 

formance Indicators (SPIs). These metrics will allow swarms to be meaningfully compared to 

non-swarm systems, which would otherwise be compared with Key Performance Indicators 

(KPIs) alone. KPIs, such as time taken, operating costs, throughput, speed of delivery and 

so on, are used in traditional industries to quantify and measure critical success factors. 

They are important for identifying gaps between actual and desired overall performance [8]. 

Until now, robustness, scalability and adaptability have commonly only been described 

qualitatively, with little mathematical proof or measurement and no way of knowing the limits 
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of these features. Using KPIs alone would miss these key factors that make swarms so 

useful. It is difficult to make a business case for swarms compared to other systems, without 

measures for these factors to describe what makes them beneficially different. It is difficult to 

compare swarms to other swarms without quantitative measures to describe these traits. To 

say that two swarms are both robust is not as helpful as to say that one is more robust than 

the other and to give evidence for where and why this is the case. Metrics for these traits can 

be used to compare across swarm solutions to improve their robustness, scalability and 

adaptability. If we have a measurement to attribute to these traits then we can gauge 

improvement in them as we try to design better swarms. The SPIs suggested in this work 

aim to solve this. To examine their efficacy they are applied to two use cases which use 

swarm algorithms. The SPIs measure robustness, fault tolerance, scalability and adaptability 

in a system as it performs a task. 

 

Literature review 
 

The Swarm Performance Indicator traits that are described here are as follows: 

● Ability to cope with faulty agents in the system 

● Ability to cope with changing swarm size 

● Ability to cope with changing external parameters (environmental or task 

parameters). 

 

The aim of the following literature review is to define the state-of-the-art in metrics to 

describe these traits. The literature review will justify the need for these metrics and 

corroborate the logic which is used to develop them from qualitative into quantitative 

definitions. It is also necessary to define names for these traits so that they can be more 

easily referred to, but there is some dispute in the literature about the terminology to be 

used. This is explored in this review. 

 

Research gap 
 

Swarm Performance Indicators (SPIs) are here created as a form of Key Performance 

Indicators (KPIs) to describe the beneficial features of swarm behaviours. The distributed 

control of swarms gives agents redundancy and means they use only local sensing and 

communication [6]. These features of distributed control are often said to inherently give 

robustness to faults, scalability to large group sizes and adaptability to changing 

environmental conditions and tasks. However, it is incorrect to state that these traits are 

inherent in all distributed systems or swarms, without proof or evidence. These traits will 

have limits which must be clearly defined if swarm robotics is to move from the laboratory 

into real, commercial usage [1]. 
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Terminology 

 

These typical benefits of distributed control that are described as Swarm Performance 

Indicators here, have been named using different terminology across the literature. The 

following is a discussion of the different terms and conclusions about the terminology that 

will be used in this paper. 

 

Ability to cope with agent faults 

 

The first swarm behaviour trait that requires a universal term is: 

 

(1) The ability to cope with faulty agents in the system 

        

In the literature this has been defined as either robustness [6, 9, 10, 11] or as fault/error 

tolerance [4, 2, 5, 12], although the two words are used interchangeably by some of these 

sources. Robustness is defined as change in performance due to damage or failures in the 

literature [10, 6, 12, 5, 9, 11, 13]. With the exception of Dorigo et al. (2021) who define 

robustness as the response to changing environmental conditions, and Sahin (2004) who 

gives robustness to describe both individual failures and disturbances in the environment. 

Harwell and Gini (2019) directly contradict this inclusion of environmental factors in the term 

robustness by stating it is "in response to internal, as opposed to environmental stimuli" [9]. 

Winfield and Nembrini (2006) say it is not surprising that there is a lack of precision in the 

use of the term ‘robustness’ because there are so many reasons that a swarm could be 

robust, from mechanical reliability due to simple hardware to distributed control leading to no 

single point of failure [1]. 

        

(1) is often described by performance loss in the literature [9, 4, 10, 6] but how much 

performance loss is allowed before the system is considered to have "poor" robustness/fault 

tolerance differs. Harwell and Gini (2019) state that "performance should remain the same" 

[9], Sahin (2004) only requires that the swarm should "operate, although at a lower 

performance" [14] and Dorigo et al. (2021) allows for a "graceful degradation of performance 

in the presence of system faults" [4]. The metric given in this research therefore has a scalar 

value, rather than a purely yes/no result. The value is inversely proportional to the 

performance loss. This result can be used for all three definitions, if the user wanted to take 

one as a preference over the others. For example, if the user did not allow for any 

performance loss (using Harwell and Gini (2019)), then they would be looking for a higher 

metric value than a user who was allowing for a lower performance, following Sahin (2004). 

However, below 0 the metric is no longer gracefully degrading in performance, and the 

system could be deemed to be not tolerant to faults, according to the definitions given here. 

This "graceful degradation" is defined in the work presented as the point at which the 

performance loss surpasses the agent loss due to faults. 

Winfield and Nembrini (2006) discusses how fault tolerance measurements and assurances 

must be stated alongside the failure mode to which the system is fault tolerant. They analyse 

fault tolerance by individual fault type and effect. With the metrics described in this work, when 

stating measures for performance change under faults, a particular failure mode is considered 

and is clearly stated alongside the metric value for it to be valid. 
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Bjerknes and Winfield (2013) discuss how self-repair can be used in the discussion of fault 

tolerance, where the swarm agents are able to recover performance that had previously been 

lost to faulty agents. They describe the failure mode of malicious agents as acting as "anchors" 

to the working agents, who must self-repair, to not have their performance degraded by the 

faulty agents [5]. This has an increased negative effect on performance due to faults, where 

they do more than remove their own performance contribution but also degrade the 

performance of surrounding working robots. However, what is missing from this discussion of 

faults is the contribution that the faulty agents could still be making to the positive 

performance. It is not necessarily true that the performance under faults is always worse than 

if the swarm were scaled down to remove these agents altogether. It is proposed here that if 

the performance under faults was better than the performance of the swarm when those 

agents are removed, then the system is tolerant to those errors in some significant way. 

Harwell and Gini (2019) discuss this in part by including the robustness to fluctuating 

population size due to robot failures as an axis in their definition of overall robustness of a 

swarm [9]. 

There are two factors to consider when discussing how well a system copes with agent faults: 

how graceful the degradation in performance is; how much the performance improves over 

the scaled down, equivalent swarm performance. These are therefore split into two metrics 

for this topic. Both terms are used to mean the same thing in the literature, often 

interchangeably in the same text, but when referring to these two separate metrics, as given 

in this work, they should be defined as: 

● If m agents out of N total have failed by Failure Mode X, then good Robustness 

occurs when the percentage change in performance is less than the percentage 

change in agents (m/N). 

● If m agents out of N total have failed by Failure Mode X, then good Fault Tolerance 

occurs when the percentage change in performance due to faults is less than the 

percentage change in performance of a working swarm with N − m agents. 

 

Ability to cope with changing swarm size 

The second swarm behaviour trait that requires a name to be used going forward is: 

(2) The ability to cope with changing swarm size 

This is defined by many sources to be scalability [4, 6, 10, 2, 7, 12, 9, 11]. How much 

change in performance is allowed for a system to be deemed scalable differs by source. 

Dorgio et al. (2021) and Şahin (2004) only require the performance to remain the same 

("function properly" - [4]) under differing group sizes, for a scalable system. Hamann and 

Reina (2022) state that "a scalable system has increasing performance with increasing 

swarm size", a higher requirement. Hamann and Reina (2022), and other sources [2, 9], 

continue on their definition of scalability in swarms to include, but not require, superlinear 

scalability or speedup as occurring when additional agents provide more performance per 

agent than the previous. If PN is the initial performance with N agents, then for superlinear 

scalability, PN+1 > PN + PN /N. The metric given for scalability by this work defines 

scalability as being a positive change in performance due to a change in group size but it 

also has a scalar value, which is proportional to the change in performance per change in 
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group size. Therefore, reading the metric value will indicate both scalability by Şahin (2004) 

and the other definitions, but also indicate when the swarm has superlinear scalability, 

according to Hamann and Reina (2022). The definition of the term is therefore: 

● A system is Scalable when the performance change is positive with increasing 

swarm size. The system is Superlinearly Scalable when the performance change 

per agent is superlinear.      

Ability to cope with changing external parameters 

The final swarm behaviour trait is: 

(3) The ability to cope with changing external parameters (environmental or task parameters). 

 

This does not include the ability to be applied to completely different tasks or environments, 

only parameter changes within the original task or environment. A common term for (3) is 

particularly difficult to find, compared to the other two traits discussed. Brambilla et al. (2013) 

would define this in its most simple terms as flexibility. However, contrary definitions from S¸ 

ahin (2004) and Dorigo et al. (2021) would define the term flexibility only by the ability to switch 

tasks with no mention of environmental factors [10, 4] and Brambilla et al. (2013) also includes 

this in their broad definition for flexibility [6]. Both Harwell and Gini (2019) and Hecker and 

Moses (2015) define (3) as flexibility, focusing on differing external environmental factors 

without mention of differing tasks. Harwell and Gini (2019) go further to define adaptability as 

an axis of their flexibility metric, where adaptability is "ability to minimise performance losses 

under adverse conditions and proportionally exploit beneficial deviations from ideal conditions" 

[9]. However, Dorigo et al. (2021) define the ability to "continue to work efficiently in 

environmental conditions different from those considered at design time" [4] as robustness. 

This is a confusing term to use because they define this as capacity to work with changing 

environmental conditions but most others found in the literature would define robustness as to 

do with robot failures [10, 9, 6, 5, 11, 13]. Dorigo et al. (2021) would define adaptivity or 

adaptability (both terms are used in their work), as the ability to change behaviour to new 

operating conditions such as obstacles or changing atmospheric conditions [4]. Other 

literature [11, 13] also use the term adaptability to describe the response to changing external 

factors. 

The term flexibility has been defined for both flexibility to work in different environmental 

changes and flexibility to work on different tasks altogether. It could be a confusing term if 

used going forward, as changing task is not discussed in the SPI used here. Therefore, the 

term adaptability has been used to avoid confusion, particularly as definitions from Hecker and 

Moses (2015) and Dorigo et al. (2021) of adaptability most closely matches (3). 

● A system is Adaptable to changes in external parameter, x, if any performance lost is 

less than the proportional change in parameter, x. Where x can be an environmental 

factor (e.g. number of obstacles, brightness of light in the space) or a task parameter 

(e.g. size of warehouse space, speed of agents). 
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Swarm Performance Indicators   

These Swarm Performance Indicators are metrics to describe traits seen in swarm 

behaviours, with their terminology reasoned using current literature on the topic. The metrics 

defined here are intended to improve the measurability of swarm behaviours. When we want 

to know how a system is fairing under faults or changes to the external parameters or 

changing swarm size, what the user is asking is how are these factors affecting the 

performance of the system. One cannot ask only how performance has differed as the 

difference from one condition to another (e.g. there is an increase in time taken of 10 

seconds) because this is not enough context. First, it is important to know how much the 

performance has changed in proportion to the usual performance of the system. This is most 

easily described by a percentage change in performance. For example, ‘there has been a 

10% loss in performance due to faults in the system’ is more informative at a glance than 

‘the performance has gone from 100s to 90s when faults are present’. Secondly, how much 

the system has altered to cause this performance change is an important factor in 

determining the effect of the change on the system. If we know that the system has lost 10% 

of its original performance due to faults, then it is necessary to know more details about the 

magnitude of these faults. For example, if the system lost 10% of performance when 1% of 

agents failed, then this is a worse result than if the same performance loss occurred when 

80% of agents have failed. The 10% looks bad when the agent loss percentage is low and it 

looks good when the agent loss percentage is high. 

        

Scalability metric 

The swarm trait that the Scalability metric, S, describes is: 

The ability to cope with changing swarm size 

This was defined following a literature review as: 

A system is Scalable when the performance change is positive with changing swarm size. The 

system is superlinearly scalable when the performance change per agent is superlinear. 

To measure Scalability as intended here, the performance should be measured for a given 

system with N agents and then again with N + m agents. The conditions and all other 

parameters between the two swarm size tests should be identical. The density of agents in 

the space will change between the two systems and the size of the space should not be 

adjusted to keep density constant. As a result, density and the available space for agent 

movement are factors which contribute to the Scalability metric result, rather than factors to 

be eliminated from the discussion. This is intentional and intended to test the scalability of a 

real swarm in real-life usage, where the available space cannot necessarily change and is a 

factor in how scalable the swarm behaviour is. For example, if the user has a 5 m x 5 m space 

to use their swarm, then they may find that the swarm performance is much worse going from 

50 to 60 agents because they do not have enough space to move around anymore. In theory, 

with adjustable space size, the swarm may perform better with 60 than 50 agents but this 

information is not useful to a user who only has a limited space and wants to know if they can 

scale up their swarm to improve performance. For this reason, when quoting the Scalability 

metric result it is important to also state the conditions which this result was found such as the 

size of the swarm space and the radius of the agents.       
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Definition for scalability 

In the literature, scalability is defined as being acceptably true when no performance is lost by 

increasing swarm size [4], [10], which is Condition 1: 

 

        

and as being good (superlinear) when the new performance is increased by more than 

the performance per agent [2, 9]. This is, Condition 2: 

  

 

 

        

Derivation of Scalability metric, S 

 

In a scalable system that moves from N agents to N + m agents, the performance at the two 

swarm sizes follows Condition 1: PN+m > PN . In a superlinear scalable system going from N 

to N+m agents, the performance of the larger system satisfies Condition 2: PN+m > PN 

+(m∗PN /N). Therefore, Scalability, S has the following derivation where the original swarm 

performance PN with N agents is changed to PN+m by the addition of m agents: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Such that a scalable system is S > 0, which satisfies Condition 1 and a superlinear scalable 

system satisfies Condition 2 when S > 1. Simplified, this is, 
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Fault Tolerance and Robustness metrics      

The swarm trait that these metrics are describing is: 

The ability to cope with faulty agents in the system 

        

The effect of faults on the system has been described in multiple ways within in the literature 

(see Section 5.2). To include the different elements of the effect of faults, two different metrics 

are proposed: Fault Tolerance and Robustness. 

To formally test the effect of faults on a system and use these metrics as they were intended, 

it is necessary to set-up experiments in the following way. Two performances should be 

measured: the original performance without faults; and the performance where faults have 

occurred. The performance with faults should have identical parameters and set-up to the 

case without faults. Ideally, the faults would be simulated by the user for better control over 

these parameters. Only one failure mode should be tested at a time so that the metric is clearly 

specific to that set of parameters, failure mode and number of failures. This supports research 

into fault tolerance metrics by Bjerknes and Winfield (2013). 

Fault Tolerance metric 

It is important to examine if the faulty agents are acting as an anchor [5] or are still being useful 

to the swarm. As an anchor, faulty agents cause their working neighbours to perform less well 

despite having no fault of their own. Conversely, a faulty agent may still be able to contribute 

to the system depending on the extent of their fault. For example, if their wheels have failed 

causing them to be static obstacles, they may still be able to communicate sensory information, 

which may help the task more than if they were just removed from the system when they failed. 

This is examined by this metric, which compares the performance of the equivalent, scaled 

down swarm performance, PS, to the failed swarm. For PS, m agents have been removed from 

the swarm space. In the failed swarm, m agents have failed and remain in the swarm space. If 

the failed swarm performs better than the scaled down swarm, then there is an indication that 

the swarm is tolerant to the fault X with m failed agents because it performs better than if those 

agents are simply removed altogether.     

Definition of Fault Tolerance 

The definition for Fault Tolerance that was reasoned in the literature review, is: 
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If m agents out of N total have failed by Failure Mode X, then good Fault Tolerance occurs 

when the performance change under faults (%∆PF ) is better than the performance (%∆PS) of 

a working swarm with N-m agents. 

        

Therefore, in a fault tolerant system, 

 

 

        

Where %∆PS and %∆PF are calculated as follows where PN−m is the performance with N − m 

agents and PF is the performance with m faulty agents out of N total. Po is the original 

performance with no failures and N working agents. 

 

 

 

 

 

 

 

 

        

Derivation of Fault Tolerance metric, FT 

 

A fault tolerant system is %∆PF > %∆PS. Therefore, Fault Tolerance, FT can be measured 

as, 

 

 

     

 

 

Where FT > 0 is a fault tolerant system.     

Robustness metric 

For a system to be counted as robust it is permissible for some performance to be lost when 

some agents are faulty [10, 4]. How much loss of performance is acceptable has not been 

defined [5] but a reasonable suggestion is given here as a metric for robustness. Dorigo et 

al. (2021) describes a "graceful degradation" in performance due to faults. Therefore, in 

this metric, we determine that a system is robust to a fault if that faulty agent does not cause 

a negative reaction in its neighbouring agents. This is similar to the anchor effect described 

in [5]. A system is robust if the faulty agent only removes their own performance 

contribution. The definition of Robustness is therefore as follows. 

Definition of Robustness 

The definition for Robustness that was reasoned in Section 5.2 is: 
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If m agents out of N total have failed by Failure Mode X, then good Robustness occurs 

when the percentage change in performance is less than the percentage change in agents 

(m/N). 

A system is robust if the performance PF with m faulty agents out of N total is, 

 

        

 

where Po is the performance without faults. Otherwise, if the faulty agents cause more 

performance loss than agent loss then the system is not robust. 

 

Derivation of Robustness metric, R 

 

Following the definition, Equation 5, given for Robustness, the metric R can be derived as 

follows 

:  

 
 

 

 

 

 

 

 

 

 

 

 

Which can be simplified to, 

 
 

Such that, 
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Where R > 0 is robust. 

     

Adaptability metric      

The swarm trait this metric describes is, 

The ability to cope with changing external parameters. 

        

This was defined following a literature review as: 

A system is adaptable to changes in external parameter, x, if any performance lost %∆P 

is less than the proportional change in parameter x, %∆x. 

To measure this metric as it is intended in this work, it is necessary to test the following 

two cases of the given system. The two cases should have identical parameters and 

conditions but with one particular parameter of interest different between the two. This 

parameter could be either environmental (e.g. number of obstacles, level of brightness) 

or task based (e.g. number of targets to find, task time limit). The term adaptability has 

been used here to define this trait but it should be noted that there is not a unifying term 

in the literature for this behaviour, see Section 5.2. The exact boundaries of the term’s 

meaning as it is used for the metric are given in the following definition. 

 

Definition of Adaptability 

A system is adaptable to changes in parameter x if the performance improves from the 

original performance Po. This is Condition 1, 

 

 

 

If this is not true and performance is lost when moving from xo to xnew, then the system is 

only adaptable if the change in performance is proportional to the modulus of the change 

in x. The modulus is used because it is irrelevant if parameter x increases or decreases. 

This is Condition 2, 
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Derivation of Adaptability metric, A 

 

A system is adaptable when, 

 

 

 

 

 

 

 

 

 

 

Which simplifies to, 

 

 
Which gives A as,   

 

 

The system is adaptable if A > 0 because Condition 2 is satisfied. The Adaptability is 

very good when A > 1 as Condition 1 is satisfied, meaning that performance has been 

gained. 
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Summary of metrics 

 

 

Table 1: Summary of the Swarm Performance Indicators 

 

 

Results of metric testing 

   

The Swarm Performance Indicators are tested here on two use cases which use distributed 

control algorithms. All experiments are simulated in a 2D Python simulator. The first use case 

is a logistics use case where the swarm is tasked with retrieving items from a storage space. 

The second is a decision making algorithm. The aim of the task is for the swarm to make a 

collective decision about which is the best of two sites, A and B, of various qualities. These 

use cases were chosen for testing because they would benefit from swarm trait specifications 

to understand how best to apply them to real-world use. In both use cases the area is entirely 
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unmapped and the agents only have local communication and sensory information. In both 

cases, the control of the swarm is entirely distributed, with each agent only sensing their local 

environment and only communicating with neighbours in their limited sensory range. 

 

 

How the results will be structured 
    

Scalability 

To test the scalability of the use case systems from N to N + m agents, the arena size 

remained the same throughout. The scalability is measured in two ways, both using the 

Equation 3 as the metric for scalability. The first is incremental scalability, which is the 

scalability for each jump in swarm size measured e.g. S5to10 is scalability of going from 5 to 10 

agents, then S is measured again for the system increasing from 10 to 15 agents, S10to15. Then 

the scalability is measured for increasing swarm sizes from x agents. Here, each increase 

gives the scalability SxtoN when the scalability is increased from x agents to N agents, tested 

for a group of N values while keeping x the same. 

 

 

Fault tolerance and Robustness 

To test the fault tolerance (FT, Equation 4) and Robustness (R, Equation 8), different failure 

modes are tested. For each use case, a series of failure modes are chosen and tested that 

are specific to the use case. Then a number of agents are failed, increasing from 1. For each 

failure mode, all other parameters are kept the same to compare them. 

When discussing fault tolerance or robustness it is important to note that the metric value is a 

guide and further depth of analysis and justification should always be taken and given 

alongside the metric value. The classification is Boolean, which can be reductionist e.g. ‘not 

Robust’ if R < 0, but what the system is robust to should always be clearly stated alongside 

the metric, to allow for complexities and to clarify the data. For example, when stating if a 

system is robust or not it should be accompanied by a clear description of the experimental 

set-up, the parameters tested and the failure mode used. The user should state e.g. ‘System 

A is robust up to an agent loss of y%, to failure mode B, in the experimental set-up C using 

control algorithm D’. Here, the agent loss that it is robust to is the highest number of agents 

that can fail by B while R > 0. 

 

Adaptability 

To test the Adaptability, different examples are used for parameter x in A, Equation 11. The 

extent of the Adaptability of the system to changes in the chosen parameter is measured by 

varying x. 
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Use case example: Logistics scenario 
    

This use case is analogous to a logistics scenario such as a warehouse full of items for 

delivery upon incoming order. Here the task is to deliver an individual and specific item to a 

delivery area. There are multiple unique and randomly spaced items with no inventory list or 

area map. The area of interest - which the agents must find when they find the requested item 

- is the delivery area. Here, in a real, extended version of this scenario, the items are collected 

by human pickers who would pack the item for shipping. 

 
Experimental set-up 

The performance is measured as the number of items delivered in the time limit. Each experi- 

ment is run for 100 trials and the performance for that given set of parameters is the average 

of these trials. Figure 9 is a screen-grab of the same simulated experiment at two different 

times, 4 s and 28 s. The earlier time point shows the items in their starting positions in the 

inlet area (although one item has already been moved out by an agent). The inlet area is 

always 20% of the warehouse width wide and 100% of the warehouse depth (‘height’ on the 

diagram) long. It is located at the far left hand side of the warehouse as viewed from above, 

as it is in Figure 9. The items always start the experiment randomly distributed in the inlet 

area, and the agents start in the not-inlet area (i.e. anywhere in the warehouse space except 

the inlet area). Also shown in Figure 9 is the requested item in black, where all other items 

appear in red. Items are delivered when they are carried to a point where warehouse width is 

greater than 800 cm (into the delivery area) which is indicated by the dotted line in the image. 

Finally, the timer values, which the agents display as an indication to other agents of how 

recently they have been in the delivery area, are also shown alongside their respective agent 

as a number between 0.0 and 500.0 (< 0.0 are not shown or communicated to neighbours). 

Unless otherwise stated, the parameters for each experiment set-up are given in Table 2. 

The task the agents are performing is delivery of a requested item. All items have a unique 

identity number that the agents can read when they are within a certain range of the item. The 

only global information given to the agents is the label of the requested item for delivery, which 

they are all searching for simultaneously. This is updated to every agent when it is delivered 

and a new item is requested. 
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Figure 9: Screen grabs taken from the swarm simulation of the logistics use case at time stamps 4 s 

and 28 s from the start of the experiment. Experiment and warehouse elements are labelled in the Key. 

 
      

Table 2: Experiment parameters for the logistics use case. The agents and warehouse dimensions are 

based on the Toshiba DOTS [15]. 

 

 

 

 

 

 

Algorithm 
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The agents in this case study are based on the Toshiba DOTS, developed at the Bristol 

Robotics Laboratory [15] (although it should be noted that the DOTS have more hardware 

and capabilities than the agents simulated in these experiments). Each agent has the 

following (simulated) hardware: holonomic wheel configuration; lifting mechanism for items; 

camera and IR sensor to detect items and obstacles; sensor to communicate with other 

agents. Using this onboard equipment, each agent can perform the following behaviours every 

time step: Random Walk; Collision avoidance; Item detection, pick up and put down; Periodic 

reshuffling of items; Delivery area detection, timer broadcast and item delivery; Swarm 

Diffusion-Taxis algorithm [16]. 

The random walk behaviour is updated every 1 second (once every 50 time steps). The 

agents move forward at a constant speed of 1 m/s for 1 second and then change to a new 

random direction of movement, adding −0.5c < αrandom < 0.5c to the current direction of travel, 

α. This is modelled as an instantaneous change in direction. The agents follow this random 

walk unless something comes into their sensory range. If they come within 0.35 m (centre-

centre) of an obstacle then their collision avoidance behaviour is triggered. If the obstacle 

is a wall then the agent adds a quarter turn to their heading direction (α = α+π/2) until they 

are moving away from the wall. If the obstacle is another agent or an item (which they want 

to avoid because they have an item currently) then the agent will move in the opposite 

direction from that obstacle. If there are multiple obstacles to avoid then the distances and 

directions to each obstacle sum to a vector, which the agent moves along to avoid them. Item 

detection, pick up and put down: When an agent that is not currently carrying an item 

comes into sensory range of an item (0.75 m from agent centre) then the agent will pick up 

the item. The items are on table-like carriers, which raise them off the ground on stilts. The 

agents can navigate underneath an item they have found and lift it up from beneath to carry 

it around. This is based on how items are stored and collected in the Toshiba test-bed, which 

simulates warehouse scenarios [15]. The items are periodically reshuffled by the agents 

which will carry items around and put them down again somewhere else if they are not the 

requested item. They generate a random number between 0 and 100 every time step and if it 

is below 2 then they drop their item where they are and leave it behind for another agent to 

pick up. This reshuffling avoids two deadlock cases: (1) the requested item is trapped behind 

unrequested items; (2) all the agents are carrying unrequested items and are unable to deliver 

them or pick up new items. Delivery area detection, timer broadcast and item delivery: 

When an agent arrives in the delivery area it receives a (simulated) signal from a beacon there 

to say it is in the delivery area. It can then deliver the item it is carrying if it is the requested 

item. It will also broadcast a time value when it has been in the delivery area, which follows 

the Swarm Diffusion-Taxis algorithm [16]. In the SDT algorithm, the timer value that the 

agent broadcasts to its local neighbours is maximum (500) when the agent is in the delivery 

area. When it is outside the delivery area, the timer value decays by 1 every time steps until 

it is NaN after 10 seconds. When the agent has the requested item, it will read the timer values 

of neighbours within its communication range (5.0 m) and move towards the agent with the 

highest timer value. It will re-do this step every time step. 
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Scalability results 

The performance was measured for different swarm sizes and the results for performance 

and Scalability are given in Figure 10 and expanded in this Section. 

        

Figure 10: Scalability, S (Equation 3) and performance (number of items delivered in time limit) for 

logistics use case (a) Performance data for various swarm sizes 1-40 agents (b) Scalability measured 

for incremental changes in swarm size (c) Scalability measured from 1 agent to N agents. 

 

 

 

 

Incremental Scalability 

Equation 3 was used to measure the Scalability of incremental increases in swarm size. For 

Equations 1, 2 and 3, m = 5 for 1 to 10 agents and m = 10 for 10 to 40 agents. The results are 
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given in Figure 10(b). The Scalability values are all S > 0, which indicates that they are all 

scalable. This means that there is no decrease in performance due to an increase in agents, 

at any agent number tested. This can be confirmed by observing the performance curve in 

Figure 10(a). The results are superlinearly scalable, S > 1, for 5 to 20 agents, which indicates 

that the performance (percentage change) increases more than the number of agents added 

(percentage change), which is a superlinear increase in performance. Considering the 

performance values in Figure 10(a), this matches the shape of the curve because either side 

of this region, the gradient is less steep. 

 

Scalability from 1 agent 

Scalability is also measured for the change in performance from 1 agent. In every case of S, 

m is increasing, N = 1, PN = P1, PN+m = P1+m. The results for Scalability are given in Figure 

10(c). The Scalability values are all scalable, with S > 0. This makes sense because all the 

performances in Figure 10(a) increase from P1. 1 to 20 and 1 to 30 agents are superlinear 

Scalability ranges, S > 1. From this, it can be concluded that the maximum super scalable 

range is 1 to 30 agents and the maximum scalable range is 1 to 40 agents (the maximum 

tested swarm size). 

        

Specification for Scalability 

The user can use this information in the following ways. If the Incremental Scalability results 

were included in a specification then the user could look up the Scalability for a given range 

of agent numbers. For example, if the user was working with this set-up with 10 agents and 

they wanted to improve the performance then they could look up Figure 10(b). From this graph 

they could read that scaling from 10 to 20 agents will give them a super scalable result, 

meaning that it will be a performance per agent increase that is more than the cost per agent 

increase. Whereas, if they had a swarm of 20 agents and they looked up what the Scalability 

was for moving to 30 agents they would find that 0 < S < 1, which is a scalable but not 

superlinearly scalable result. They would therefore know that they would get a performance 

increase but it would not be an increase with good efficiency. How they would proceed would 

depend if they valued performance or efficiency more and what resources they had available 

to them. 

If the Scalability from 1 results were included in a specification then this could be used to 

decide the best swarm size for the user to use, depending on how many agents they have 

available or have the resources for. If a user had unlimited agents and the same experimental 

set-up as is used for the results in Figure 10(c), then they could look at this graph and see 

that they would get the most efficient performance per agent increase (from 1 agent) at 20 

agents. From the performance data (Figure 10(a)) they can see that this is not the best 

performance possible. But if the user values efficiency then 20 agents would be their best 

choice. Either Incremental Scalability or the Scalability from 1 can also be used to compare 

one swarm’s Scalability to another. For example, if both swarms have N agents and perform 

the same task in the same set-up then the swarm with the highest S1toN number would be the 

most scalable. 
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Fault Tolerance and Robustness results 

     

The performance of the system under 4 different failure modes is measured and given in 

Figure 11(a). In part (a) of this Figure, the scaled down swarm performance P(SD) and the 

proportional change P(%N) in performance are also given alongside the performances under 

faults 1-4. P(SD) is very similar to P(%N), which means that the results for Fault Tolerance 

(FT) and Robustness (R) are likely to be very similar to each other. A swarm of 25 agents was 

used for these experiments. The failure modes tested were as follows: 

 

● Failure Mode 1 (FM1): Malicious agents. The delivery area timer value is wrong. For 

failed agents the timer is always set to 500, the maximum value, so that they look to 

their neighbours as if they are always in the delivery area. 

● Failure Mode 2 (FM2): Failed agents cannot pick up items and they will instead treat 

them as obstacles. 

● Failure mode 3 (FM3): Delivery area timer value always set to 0. Failed agents 

cannot broadcast how recently they have been in the delivery area but they can still 

detect the delivery area when they are in it to deliver items they carry.  

● Failure mode 4 (FM4): Failed agents cannot deliver items. In the reshuffling 

behaviour, items are not dropped if they are the requested item. This means that with 

this failure mode, the requested item will never be passed on to a working agent if it 

is carried by a failed agent in this failure mode. Therefore, if an agent has failed in 

this way and is carrying the requested item then the scenario will deadlock and no 

more items will be delivered.      

        

Fault Tolerance results 

The results for Fault Tolerance at each failure mode (FM) are given in Figure 11(b), alongside 

the performance data in Figure 11(a). The system is fault tolerant to FM3 up to and including 

10 agent failures. Looking at the performance data for FM3, this is clearly true as the average 

performance increases for some of the results with increasing faulty agents and is always 

high. The system is fault tolerant to FM1 for 1, 2, 4-10 failed agents. The result where it is not 

fault tolerant , m = 3 agents, could be accounted for by the general variation in performances 

for P(FM1) and P(SD), shown in the performance data. 

The system is fault tolerant to FM2 for 1-2, 4, 6-8 agent failures. The magnitude of the FT 

results for FM2 are small compared to the other failure modes at almost all numbers of faulty 

agents tested, because the performance trend is close to the scaled down performance (seen 

in Figure 11(a)). 

 

The system is not fault tolerant to FM4 at any number of faulty agents. The larger magnitude 

of FT (with negative sign) indicates the catastrophic failure caused by this FM from 2 failed 

agents and up, seen in the performance data for FM4. 

 

Robustness results 
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As expected, the values for Fault Tolerance, FT (Figure 11(b)) and Robustness, R (Figure 

11(c)) are very similar in this case, as was predicted given the performance data for the scaled 

down swarm. The system is robust to all 4 failure modes tested when 1 agent has failed, as 

all have results R > 0. The system remains robust to both FM1 and FM3 up to and including 

10 agent failures. The system is robust to FM2 up to 5 agent failures and not robust for 6-10 

agent failures. Finally, the system is not robust to FM4 for 2 and above agent failures, which 

also reflects the catastrophic failure caused by this FM. 

      

  

Figure 11: Performance (items delivered in time limit) with different numbers of faulty agents, m, for the 

logistics use case and Fault Tolerance, FT (Equation 4) and Robustness, R (Equation 8) results. (a) 

Performance data with m agents failed by each failure mode (FM 1-4) and an equivalent scaled down 

swarm with 25 − m agents (P(SD)) and P(%N), which is the performance if it is reduced by the same 
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proportion as agents lost. If FM-P is above P(SD) at a given m then it is a fault tolerant result, if it is 

above P(%N) then this is a robust result (b) FT results (c) R results. 

        

Adaptability results 

     

The Adaptability between two conditions was measured for three different types of condition 

change. These were: warehouse width; delivery area width; and number of items. These are 

used as parameter x in Equation 5.11. For all three parameter experiments, the swarm size 

used was 25 agents and the rest of the parameters are given in Table 2 unless otherwise 

stated. 

 

 

Adaptability to changing warehouse width 

Warehouse width was varied over a series of experiments to measure how adaptable the 

system was to changing warehouse size. This information is useful to a user hoping to use 

the system with their given swarm size and number of items, when they need to make 

decisions about what space to give the agents. It is unclear without testing what size space 

would be optimum for a given system and how much performance might be lost or gained by 

increasing or decreasing that space. The available space may change in a modular, pop-up 

storage space and how adaptable the system is to this change is important to know. 

The depth of the warehouse was kept at 10 m in each experiment and the delivery area width 

is always 20% of the warehouse width. Performance data is given in Figure 12(a), where the 

performances measured all decrease as warehouse width increases from 500 cm. Therefore 

none of the results for the widths tested are adaptable, in Figure 12(b). It is difficult to tell from 

the performance graph alone how the proportional changes with performance compare to 

proportional changes in the parameter, warehouse width, so looking at the Adaptability metric 

results is necessary for further analysis. The system is adaptable (A > 0) from 500cm to 

2000cm (the maximum width tested). The system is most adaptable from 500 cm to 1000 cm, 

which has the highest A value. The values for 500-1500 cm and 500-2000 cm are very similar 

Adaptability values. 

The performance at 2000 cm is 8 items compared to 47 items at 500 cm. This is a big drop in 

performance but the system is still defined as "adaptable" by this given metric because it 

measures the proportional changes in performance and width. In this case, the performance 

changes proportionally to the change in width, which is defined as adaptable following the 

reasoning and definition given previously. 
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Figure 12: Performance (number of items delivered in time limit) and Adaptability, A (Equation 11) to 

various warehouse widths. (a) Performance data for warehouse widths 500-2000 cm (b) Adaptability 

metric, A, results, comparing performances from (a) to xo = 500 cm. 

 

Adaptability to changing delivery area width 

The size of the delivery area affects the system in the logistics scenario in two ways. The first 

is that it is more likely that a random walker will come across the delivery area if it is larger, 

which means that the performance is likely to increase with increased delivery area size. 

However, a smaller delivery area is more useful to a user of the system because the delivery 

to the picker- packer is more efficient and the system is more useful. It also means that the 

storage space can be larger and more items can be stored. Additionally, the signal source 

used to indicate the delivery area cannot necessarily have a far reach. This experiment set 

tests how adaptable the system is to changing delivery area width, particularly decreases in 

delivery area width. 

The Adaptability to changing delivery area size in a 10 m x 10 m warehouse is tested here. 

The depth of the delivery area is kept constant at 10 m (the depth of the warehouse). The 

performance data for different delivery areas is given in Figure 13(a). The Adaptability metric 

results are given in Figure 13(b) where A is measured by taking the original delivery area 

width as 200 cm, so that in each case x0 = 200 cm. The performance increases when delivery 

area width is increased 200 cm to 250 cm and decreases when delivery area width decreases 

for all results, 200 cm to 50 cm. The performance increases are reflected in the Adaptability 

value for 200 cm to 250 cm, which is A > 1. All other results reflect the decrease in 

performance (A < 1) but all are still found to be adaptable, A > 0, down to and including delivery 

area width = 50 cm, compared to 200 cm. 
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Figure 13: Performance (number of items delivered in time limit) and Adaptability, A (Equation 11) to 

various delivery area widths. (a) Performance data for 50-250 cm delivery area widths (b) Adaptability 

metric, A, results, comparing delivery area widths from (a) to xo = 200 cm. 

 

Adaptability to changing number of items 

When items are delivered they are removed from the warehouse space and no more items 

are added to the warehouse during the experiment. This can change the performance of the 

swarm because if the items are numerous then they can occlude each other and it can take 

longer to find the requested item. The probabilistic reshuffling behaviour is used to avoid 

deadlocks caused by trapped items but progress can still be slowed. How adaptable the 

system is to changes in the number of items is measured here. 

 

The Adaptability is measured between x0 = 60 and x items. The results for performances at 

different numbers of items, Figure 14(a), show that the performance decreases as the 

numbers of items increase from 60. Adaptability metric results from Figure 14(b) show that 

increases from 60 to 90 items are not adaptable (A < 0) whereas increases from 60 to 100-

120 items are adaptable (A > 0). For x=70-90 items, the proportional change in performance 

is greater than the change in number of items from 60 to x (e.g. %∆x = (70 − 60)/60 = 0.17). 

Whereas, for x = 100 to 120 items, the change in number of items (e.g. %∆x = (100 − 60)/60 

= 0.67) overtakes the performance change. The gradient of performance change is less 

severe for this section of results in Figure 14(a). This does not mean that the system is 

adaptable in the range 60-100 items, as it is not adaptable for 60-70 items. Therefore, this 

system would be classified as not adaptable to any increase in item number from 60. This is 

because the first increase in items tested is not adaptable (x = 70 items, A < 0). This does not 
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mean that the system is unusable at 70 items, it may be that 31 items (P i = 70 = 31 items) is 

a reasonable performance for the user, but it cannot be said to be adaptable, when compared 

to 60 items, if the user is using this metric to gauge Adaptability. Since no adaptable range 

was found from 60 items, it was tested again for smaller gaps, starting with 60-61 items. These 

results are given as performances in Figure 14(c) and the corresponding Adaptability of the 

performances in Figure 14(d). None of those tested are adaptable (all are A < 0) meaning 

there is no adaptable range from 60 items. 

 

        

Figure 14: Performance (number of items delivered in time limit) and Adaptability, A 

(Equation 11), to varying numbers of items. (a) Performance data for 60-120 items (b) 

Adaptability metric, A, results for 60-120 items, comparing performances (a) to xo = 60 items 

(c) Performance data for 60-64, 70 items (d) Adaptability metric, A, results for 60-64, 70 

items, comparing performances (c) to performance at xo = 60 items. 
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Use case example: Collective decision making 
    

Use case description 

 

In the following, a use case for a collective decision making algorithm with distributed control 

is considered. The swarm of N agents are tasked with making a decision between two sites 

of different qualities, Site A and Site B, by voting for which Site they think is best at every time 

step. 

 

Experimental set-up 

 

The performance is sum over time of the number of votes for Site A (the higher quality site) 

every second. This is the Integral                where, at each time step (dt = 0.2s), the sum of the 

votes for Site A are counted and divided by the total number of agents (ΣV (A) / N). This is 

summed for the total number of time steps (Total time T = 360s) to give the area under the 

curve as performance. Each experiment is run for 100 trials and the performance for that 

given set of parameters is the average of these trials. Figure 15 is a screengrab of the 

simulated environment with the locations of Site A and Site B shown. Table 3 has the full set 

of parameters used for each experimental set-up, unless otherwise stated. 

 

 

Figure 15: Screen grab of a simulation of the decision making use case. Circles are agents in the 

swarm. The dotted lined boxes represent the edges of the areas of interest, Site A (bottom, right of 

image in blue) and Site B (top, left of image in red). 
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Table 3: Experiment parameters for the collective decision making use case. The agents and 

warehouse dimensions are based on the Toshiba DOTS [15]. 

        

Algorithm 

While moving around the swarm space the agents perform the same random walk and 

collision avoidance behaviours as in the logistics use case. For the decision making 

algorithm, the agents communicate with local neighbours (within their sensor range, 4 m) 

every time step. They exchange information about their current vote (for best site) and their 

level of confidence in that vote, which is represented by an integer. This confidence is equal 

to the Site quality when they are in that Site, and degrades by 1 every time step that they are 

out of the site. If their confidence goes to 0 then they change their vote to Undecided 

(U). An agent changes their own vote if the majority of their neighbourhood is voting for 

another site. If the agent does not have the highest confidence of their neighbourhood, then 

they will change their confidence level (including when not changing their vote) to be equal to 

the average confidence of their neighbours in that time step. 

        

Scalability results 

 

The performance was measured for different swarm sizes and the results for performance 

and Scalability are given in Figure 16 and expanded in this Section. 

        

Incremental Scalability 
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Equation 3 was used to measure the Scalability of incremental increases in swarm size. The 

gap in agent number over which Scalability was measured was always 5 agents, increasing 

in a total range from 1 to 70 agents. These Scalability results are shown in Figure 16(b). All 

average performances from 1 to 45 agents were scalable according to the metric given as S 

> 0. This corresponds to a trend of increasing performances seen in Figure 16(a) for this 

same region. For agents added beyond this the resulting performance changes are negative, 

resulting in the increase from 45 to 55 agents being not scalable. There is a slight increase 

in performance from 55 to 65 agents, resulting in a scalable result S > 0 again, but then it 

dips to not scalable for the range 65 to 70 agents. The results for increasing swarm size from 

5 to 30 agents are superlinearly scalable (S > 1), telling us that the proportional change in 

performance with change in agent number is superlinear for each increase of 5 agents in this 

range.  

 

   
  

Figure 16: Scalability, S (Equation 3) and performance (integral over time of votes for Site A) for 

decision making use case. (a) Performance data for various swarm sizes 1-70 agents (b) Scalability 

measured for incremental changes in swarm size (c) Scalability measured from 10 agents to N 

agents. 
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Scalability from 10 agents 

 

In this case, N in Equation 1 and 2 is always N = 10, Pn = P10. The results for the Scalability 

from 10 agents upwards, using performance data from Figure 16(a) are given in Figure 

16(c). The results for Scalability from 10 are superlinearly scalable, S > 1, up to 50 robots. 

The swarm is scalable, S > 0, for all results from 10 to 70 agents. 

 

Specification for Scalability 

 

From the Incremental Scalability results in Figure 16(b), the user could read that the range 5 

to 30 agents all have superlinear scalability for each increase of 5 agents in this range. This 

means that the user would know that they could increase their swarm size in this range for a 

performance increase that was greater than the current performance per agent. This can 

help to make decisions about adding agents to the system when cost and efficiency are 

important to the user. Additionally, increased scalability from 10 agents, Figure 16(c) can tell 

the user what the most efficient swarm size would be, which here is 30 agents, where S = 

1.5 is highest for the swarm sizes tested. 

       

Fault Tolerance and Robustness results 

        

The performance of the system under 2 different failure modes is measured and given in 

Figure 17(a). In part (a) of this Figure, the scaled down performance P(SD) and the 

proportional change P(%N) in performance are also given alongside the performances under 

Failure Modes 1 and 2. A swarm of 25 agents was used for these experiments. 

The failed agent’s votes are not included in performance. The simulated failure modes were: 

● Failure Mode 1 (FM1): Failed agents acted as malicious agents, giving false 

information to their neighbours. Failure was simulated by a broadcast of a vote for 

Site B (the lower quality site) with a high confidence of 50. The broadcast was 

constant and unchanging by either Site A detection or neighbourhood 

correspondence.     

● Failure Mode 2 (FM2): Failed agents cannot detect the Sites A or B. They are still 

able to communicate with neighbours and give votes and confidence levels based on 

this communication but they cannot sense the sites if they come across them 

themselves.        

Fault Tolerance results 

 

The results for the Fault Tolerance values for the two failure modes are given in Figure 

17(b). The FT results for FM1 are high negative numbers, indicating a catastrophic failure 

due to this failure mode, even as low as 1 failed agent. Observing the performance data for 

FM1 in Figure 17(a), this is an accurate result as the performance goes from 128 with no 

failures to 53 with 1 agent failure. The results for FM2 are very good, with all agent failures 
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up to 10 (the maximum number tested) being fault tolerant results, FT > 0. This means that 

the swarm improves upon the performance of the scaled down equivalent swarm, under 

FM2, in these conditions. 

 

 

Figure 17: Performance (integral over time of votes for Site A) with different numbers of 

faulty agents, m, for the decision making use case and Fault Tolerance, FT (Equation 4) and 

Robustness, R (Equation 8) results. (a) Performance data with m agents failed by each 

failure mode (FM 1,2) and an equivalent scaled down swarm with 25 − m agents (P(SD)) 

and P(%N), which is the performance if it reduced by the same proportion as agents lost. If 

FM-P is above P(SD) at a given m then this is a fault tolerant result, if it is above P(%N) then 

this is a robust result. (b) FT results (c) R results. 
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Robustness results 

 

The results for the Robustness values for the two failure modes are given in Figure 17(c). 

The R values correctly reflect the catastrophic failure that occurred for Failure Mode 1, as all 

the results for FM1 are R < 0 and therefore not robust. For FM2, all results are R > 0 (robust) 

except for m=1, which is close to zero but less (Rm=1 = -0.01). 

 

Adaptability results 

     

Adaptability to changes in Site qualities is measured here by varying the quality of Site A. 

Site A is always the best site, with a quality that is greater than Site B (which is always 15). 

How much better Site A is than Site B can make a difference when it comes to making a 

decision as a group about which is better. Site A quality is varied for these experiments in 

the range 20-100. A greater disparity in Site qualities is likely to produce a greater 

performance. However, it is not always possible to choose the quality of two sites in practical 

use, so it is useful to know how adaptable the system is to different Site qualities. 

For each Site A quality tested, 100 trials were tested in an arena with all other parameters 

unchanged from those given in Table 3. Three different swarm sizes were tested to consider 

how swarm size affects the Adaptability to changes in Site quality. The swarm sizes tested 

were 15, 25 and 35 agents. The performance data is given in Figure 18(a). The original Site 

A quality is taken to be 100 (xo = 100 in Equation 11). The results for Adaptability are given 

in Figure 18(b). The system is adaptable, A > 0, for all three swarm sizes when Site A quality 

drops from 100 to 90 and 100 to 80. The 35 agent swarm has a slight improvement in 

performance at 90 compared to 100, giving it a very good Adaptability score of A > 1. Swarm 

sizes 25 and 35 are both adaptable all the way to a Site A quality of 20, from 100. However, 

the 15 agent swarm is not adaptable to a Site quality change of 100 to 70, or any below 70. 



 

 
WP5 Emergent awareness 

D5.1 Measuring emergent awareness 
 

 

 

 

  
 

Funded by the European Union under Grant Agreement 101070918. Views and opinions expressed are however those of the 

author(s) only and do not necessarily reflect those of the European Union or European Innovation Council and SMEs Executive 

Agency (EISMEA). Neither the European Union nor the granting authority can be held responsible for them. 

   
57 

 

 

 
 

Figure 18: Performance (integral over time of votes for Site A) and Adaptability, A (Equation 11), to 

varying qualities of Site A. (a) Performance data for qualities 20-100 (b) Adaptability metric, A, results 

for qualities 20-90, comparing performances from (a) to xo = 100 
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Discussion 

        

Successful metrics 

 

The Swarm Performance Indicators (SPIs) tested here are metrics for: Scalability; 

Adaptability; Robustness; and Fault Tolerance. The SPIs were tested on two distributed 

control use cases to determine if they had these traits successfully and what the limits were 

of these traits in these use cases. For example, different swarm sizes were compared for 

their Adaptability to changes in target site quality (Decision Making use case, results in 

Figure 18(b)). This is useful for determining what swarm size is best when you know the Site 

quality will vary. When transferring swarms to the real-world, it will be necessary to write 

specifications for their design and usage and to communicate to the user their limitations and 

strengths. These SPIs provide quantitative ranges of parameters that can contribute to a 

specification for this purpose. For example, the Scalability metric has been successfully used 

to determine a range of swarm sizes to which the logistics use case system is super 

scalable. Bjerknes and Winfield (2013), among other works, said that it is important for 

metrics describing the effect of faults to answer questions about what the swarm is tolerant 

to and to what extent it is robust. These are given by these metrics for Fault Tolerance and 

Robustness in the results here, with specific failure modes and number of faulty agents 

given alongside the metrics. Finally, the metrics are generalisable across a range of swarm 

systems and tasks. They are generalisable because the SPI definitions are based on 

changes in performance in proportion to parameters that are given in each use case when 

the metric is applied. The metric can therefore be applied to any system or task because 

they are based only on performance and parameter data from that system or task and 

compared within the context of that use case.        

Context and Boolean classifications 

Boolean classifications of e.g. "robust" or "not robust", are reductionist without further 

context, as is discussed in the justification for these metrics. Therefore, when these metrics 

are given as proof of these swarm traits, it is important to include the circumstances in which 

the system achieved the given score. For example, if stating that the system is scalable 

according to Equation 3, it is paramount that the user also say what swarm sizes it is 

scalable to and from, and what the experimental set-up was. This is given in the Use Case 1 

and 2 results in this work, such as for the decision making (DM) case study, it could be said 

that "A swarm following the DM algorithm is scalable in the range 10 to 70 agents with the 

experimental set-up given in Table 3. The same swarm set-up is superlinearly scalable in the 

range 10 to 50 agents". Similarly, Fault Tolerance and Robustness are given alongside the 

failure mode, they are tolerant/robust to, and the number of faulty agents in the system at the 

time of measurement. Additionally, the Adaptability is measured to a change in a specific 

and stated parameter with detailed experimental set-ups also given. For each of the metrics 

the full context is clearly stated and successfully used to describe the effects of faults, 

scaling swarm size and changing parameters. 
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Clear definition of terminology of metrics 

 

In the literature there is dispute over what these different effects should be termed and what 

would describe them. A full description of the current literature is given in Section 5.2 and the 

metric terminology is justified. However, there will still be some confusion going forward 

because of varied terminology and inevitable further discussion of an evolving lexicon. 

Therefore, the metrics are clearly described in this work by the effect that they are 

measuring, not just as a single word, such as "adaptability" without explanation. These 

defined effects are shown to be successfully measured in each case but when these metrics 

are used in other works it should be made clear by the user that they are descriptors of data. 

For example, ‘Fault Tolerance, FT’ is, here, short-hand for the proportional difference 

between the scaled down swarm (N − m agents) performance and the faulty swarm 

performance (N agents with m faulty agents). When discussing FT values, it should always 

be made clear that any discussion of "fault tolerance" derives from this measurement. This is 

particularly important when performance can become confused with these traits. These 

metrics are not measures of good or bad performance: that can be read straight from 

performance data and user-set thresholds of acceptable values. Instead, they are measures 

of the effects on performance due to changes in their circumstances. For example, a fault 

tolerant result, FT > 0, may have a performance that is unacceptable to the user but that is 

separate to the information given by the FT metric. Just because something passes as good 

in terms of the Swarm Performance Indicators, does not mean that it has good performance 

for the user. This judgement is user dependent, as different performances are acceptable to 

different users depending on their needs and cannot be generalised here. 

Using proportional change 

 

Proportional changes were used in these metrics, e.g. % ∆ P as opposed to the difference 

between data points of ∆ P = P 2 − P 1 . This is beneficial as it removes units from the 

equation. Without units, the change in any performance parameter can be directly compared 

to any other factor e.g. number of faulty agents. For example, comparing a loss of 50 

seconds to a loss of 3 agents is difficult to digest whereas a loss of 5% of performance 

compared to 2% loss of agents is directly comparable. Using proportional changes also 

brings in information about how significant that change is to that particular system, because 

it is a percentage change from the original performance. For example, a change in 

performance of 10% compared to 20% is easier to compare directly than a change in 10 

seconds compared to 20 seconds. It may be that the original performance was 1000 

seconds, in which case 10 seconds would not be significant, or it could have originally been 

30 seconds in which case a change of 10 seconds is huge. This makes the metric more 

generalisable as the change in performance discussed is directly dependent on the original, 

baseline performance. The issue with using proportional changes is that as the deviation 

from the original parameter   grows, the amount of loss of performance that is acceptable 

increases with it. For example, according to Equation 11, a system which has a parameter 

change of % ∆ x = 0.01 is only adaptable if the performance loss is less than 0.01. This 

threshold could be missed by variation in results alone because the criteria is so tight. This 

can result in confusing metric results where e.g. a system that was not considered robust to 

1 to 5 failures, is considered robust to 5 to 10 failures, according to the metric for R. This 

happens in the decision making use case, which is found to be robust to Failure Mode 2 for 

2-10 agent failures but not robust to 1 failure (see results Figure 17). Only a small amount of 
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performance loss is deemed acceptable at this low failure rate and the variation in mean 

performance can be outside of this range, causing the data to score poorly, despite scoring 

well with higher losses of agents. 

 

Variability in results 

 

 

Figure 19: The full set of the performances (number of items delivered in the time limit) for 100 trials in 

the logistics use case, for varying item numbers (i = 60 to 120 items). This shows the various nature 

of the results, which make the metrics difficult to measure using average performances. 

 

Using average performance can cause variability in the results to be an issue when 

measuring these traits. For example, in the logistics use case, when measuring the 

Adaptability to changes in the number of items, the system appears to be adaptable from 60 

to 100 items but not for 60 to 70 items (see Figure 14(b)). When smaller gaps between 60 

and 70 items are tested to find what the system is adaptable to within this range, it was 

found to not be adaptable even to one additional item (see Figure 14(d)). Variability in the 

results is shown to be a factor in this confusing result, as follows. The set up with 60 items 

was tested for another 100 trials. This second set of trials gave an average performance of 

39.65 items collected, compared to the first set in which 43.81 items were collected in 

identical conditions. The variation between these two results for 60 items is greater than the 

variation measured between 60 and 61 (P 61 = 40.24 items). The full set of the 

performances for 100 trials in the logistics use case, for varying item numbers are given in 

Figure 19. This shows the various nature of the results, which make Adaptability (and other 

metrics) difficult to measure using average performances. 

The variability in performance data is not included in these metrics, which could mean that a 

user could be using a system, expecting it to be e.g. adaptable to x, but finding that it is only 

adaptable in Y% of uses. For example, for the logistics use case, the results for m = 1, 

Failure Mode 2 (no Site detection) was found to be a fault tolerant result. However, when 

examining all 100 trials individually, 55% were fault tolerant but 45% were not fault tolerant . 

This is a high percentage, which means that it is likely a user of this system will often find 
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that the performance is less than the scaled down swarm with 24 agents, despite having a 

"good Fault Tolerance" rating when using average performances. When using these metrics 

it is good to include some discussion of the variability in the average performance used as 

either an issue or positive justification for the presence of the trait in a given system. 

 

Uses 

 

The SPIs can be useful for fitness functions when developing swarm algorithms in 

evolutionary models. These metrics provide a way of selecting for adaptability, robustness, 

fault tolerance and scalability. The SPIs have a Boolean classification of above or below 

zero but they also scale with the metric value, meaning that e.g. R = 0.7 is better than R = 

0.1, by which it provides useful, descriptive information about the system’s (e.g.) Robustness 

beyond a yes/no definition and allows for trade-offs that can be quantitatively described. For 

example, going from one algorithm to another may improve Scalability but decrease 

Robustness. The degree of this improvement vs decrease can be measured with these 

metrics. The metrics are useful when they are helping to quantify a report on the behaviour 

of a swarm, e.g. to measure improvement to adaptability when developing an algorithm, or to 

compare two systems for their level of Scalability.  

 

Limitations 

 

Limitations of the Adaptability metric  

 

The changing parameter x is restricted to a numerical value. In the literature, some 

adaptability definitions apply to a swarm being used for different condition sets. For example, 

the Adaptability of a swarm to being applied to entirely different use cases or tasks. These 

full, various condition sets cannot be described by one parameter so cannot be used with 

this Adaptability metric. Instead, this metric is useful for the case where a user would want to 

know how adaptable a particular system and set-up is to a change in one particular 

parameter. This benefits from being generalisable and specific but can lose some definitions 

of adaptability for the application of swarms to more broad changes in circumstances. 

Limitations of the Scalability metric  

 

The S metric cannot measure how easy or complicated it is for agents to be added or 

removed from a swarm in practical use terms. Part of the discussion of scalability in swarms 

is how easily new agents can be added without requiring complicated processes or pausing 

the rest of the swarm behaviours. For example, Şahin (2004) describes how a swarm is 

scalable by saying agents could be "poured" into the group to add them to the system. 

Therefore, there are some scalability factors that are not encompassed by this metric. These 

features may be limited to qualitative discussion by describing the process to add agents to 

the group. 
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Limitations of the Fault Tolerance and Robustness metrics  

 

One feature of swarms that could be why they are so Robust/Fault tolerant is their self-

organisation ability to self-repair. Bjerknes and Winfield (2013) discuss self-repair as a 

swarm’s ability to avoid negative effects from failed agents. They simulate failed robots in the 

system during a taxis task and monitor how the swarm becomes ‘anchored’ to the failed 

agents but then recovers performance and manages to complete the task. This is 

considered good Robustness/Fault Tolerance. The pattern of performance over the course 

of the task is used to measure self-repair time. In the FT and R metrics, the pattern of 

performance over time is not considered and self-repair is not discussed. Self-repair cannot 

be applied to all swarm algorithms or tasks, so it is left out to make the metric more 

generalisable but it should be considered when analysing cases where it occurs. Some 

guidance on how to include or measure self-repair could be included in future work with 

these metrics. 

 

Conclusions 

 

Swarm Performance Indicators are quantitative metrics for Fault Tolerance, Robustness, 

Scalability and Adaptability in multi-agent systems. These traits have been given in the 

literature as being inherent to swarm systems, without measurement, which has created a 

gap in the research for a method of measurement. The exact definitions for these traits and 

their terminology is disputed in the literature but their definitions here are justified with a full 

literature review on the topic in swarm systems. The metrics are used to successfully 

describe the effects they aim to measure on two use cases, which both use distributed 

control. It is shown that the metrics can be used towards specifications for swarms and for 

improving their explainability. The metrics can also be used to compare two systems in 

terms of these swarm traits or to quantify the improvement (or otherwise) in them when 

different system parameters, such as swarm size, are changed. 
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