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analysis for the connectors. Subsequently, we derive the characteristics 

and stability properties of a few examples of archetypical networks. 

Importantly, this involves fundamental analysis within T3.2.  Finally, we 

draw the connection to WP4 by stating how archetypes (and specifically 

archetypical networks) can be used as part of computing (T4.1) and 

adaptive systems (T4.3). 
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Abstract 

With this deliverable, we will present our preliminary investigations into Units and Connectors. 

Our ultimate goal is to define a set of building blocks that can be combined into more complex 

systems - called archetype networks - that are the fundamental computational engine of 

EMERGE. We build this framework using the language of nonlinear dynamical systems.  

The document sections are organized as follows. We start by discussing the units, their 

definition, and a brief description of the systems we more closely looked at so far. We then 

provide a similar analysis for the connectors. Subsequently, we derive the characteristics and 

stability properties of a few examples of archetypical networks. Finally, we draw the connection 

to WP4 by stating how archetypes can be used as part of computing and adaptive systems. 
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1. Units 

1.1 Definition 

An archetypical unit is an ODE of form 𝑦�̇� = 𝑓(𝑦𝑖 , 𝑢𝑖) where 𝑦𝑖 ∈ 𝑅𝑛 is the state of the unit and 

𝑢𝑖 ∈ 𝑅 a scalar input. We emphasize that 𝑛 is of relatively small dimension. In all the units we 

discuss below, n = 2, as 𝑦𝑖 can be interpreted as the position and velocity of a (pseudo-) 

mechanical system. 

1.2 Harmonic oscillator 

The three fundamental components of a mechanical system are potential energy and kinetic 

energy storage units (e.g., springs and masses respectively), and sources of energy 

dissipation (e.g., dampers). The simplest interconnection of one element of each class 

generates a mechanical oscillator, which we show in Fig. 1.  

 

Figure 1: Schematic representation of a harmonic oscillator. 

If the characteristics of the spring and the damper is linear and the mass is constant, the 

oscillator is called harmonic and it is described by the following ODE, where we also include 

a time-varying forcing 𝑢𝑖(𝑡): 

 

Here, 𝑥𝑖(𝑡), 𝑥𝑖(𝑡)̇ , 𝑥�̈�(𝑡) ∈ 𝑅 are the configuration, velocity, and acceleration of the oscillator 

respectively. The point mass attached to the end of the oscillator is denoted with 𝑚 ∈ 𝑅+, the 

spring stiffness with 𝑘 ∈ 𝑅+, and the damping coefficient with 𝑑 ∈ 𝑅+. The state of this 2nd 

order ODE is defined as 𝑦𝑖 = [𝑥𝑖  𝑥�̇�]
𝑇 ∈ 𝑅2. The equilibrium of the system is given by �̅�𝑖  =

[0 0]𝑇 . 

First, we consider the unforced system 𝑢𝑖(𝑡) = 0 with a stable equilibrium in �̅�𝑖 = 0, for which 

the choice of initial conditions 𝑥(0), �̇�(0) give rise to different transient solutions. The linear 

elastic forces 𝜏𝑒𝑙 = −𝑘 𝑥𝑖 relate to the intrinsic frequency of the underlying harmonic oscillator. 

A key feature required for a dynamical system to be exploited for computational purposes is 

the fading memory. In rough terms, we aim for a stable dynamical system that can forget the 

initial condition after a transient. Fading memory can be established with damping coefficient 

𝑑 > 0, thus introducing a source of energy dissipation and inducing the system to converge 

towards the resting state of 𝑥𝑖 = 0 which we visualize with the orange line in Fig. 3.  
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Figure 2: Time evolution of a harmonic oscillator for different stiffness and damping coefficients. The point mass 

is always chosen to be 𝑚 = 1. 

In Figure 1, we present the time evolution of a harmonic oscillator for different parameters. 

The stiffness determines the frequency of the oscillation (see blue, orange, and green lines). 

If a damping coefficient larger than zero is chosen, then the configuration of the oscillator 

converges towards the equilibrium �̅�𝑖  = 0 . 

1.3 Multistable oscillator 

The harmonic oscillator can exhibit multistable characteristics by adding a nonlinear potential: 

 

where 𝑤 ∈ 𝑅−, and 𝑏 ∈ 𝑅. This characteristic might be desirable for hybrid systems where 

the initial condition should have an impact on the output of the network. 

We analyse the equilibria of the unforced system (𝑢𝑖 = 0). For 𝑏 = 0, the system always has 

a single equilibrium at �̅� = 0. If 𝑏 ≠ 0 and 𝑤 = 0, the system has a single equilibrium at �̅� =
𝑡𝑎𝑛ℎ(𝑏)

𝑘
. On the other hand, if 𝑏 ≠ 0 and 𝑊 < 0, the system becomes multistable for certain 

choices of 𝑏. Namely, the system can have between one and three equilibria. If the oscillator 

has only one equilibrium (as seen in Fig. 3), it will be asymptotically stable. For two equilibria 

(shown in Fig. 4), one will be unstable and the other one will be asymptotically stable. If the 

system has three equilibria, two of them will be asymptotically and the other one unstable as 

it is shown in Fig. 5. It is important to note that all equilibria will be within the interval [−1,1]. 

We remark that this unit is equivalent to the scalar case of a network of harmonic oscillators 

coupled to each other by the neuron-like connector. 
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Figure 3: Phase portrait and time evolution of a one-dimensional harmonic oscillator with neural coupling and a 

single, asymptotically stable equilibrium at  �̅� = −1. The oscillator is configured with 𝑘 = 1, 𝑑 = 0.4, 𝑤 = −5, 𝑏 =

4, and 𝑢 = 0. The orange cross in the phase portrait denotes the equilibrium state. Furthermore, we display on 

the phase portrait sample trajectories (solid black lines) with their initial condition marked with a black dot. 
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Figure 4: Phase portrait and time evolution of a one-dimensional harmonic oscillator with neural coupling. The 

oscillator has two equilibria: one asymptotically stable equilibrium at �̅�1 = 1 and one unstable equilibrium at �̅�2 =

−0.93. The oscillator is configured with 𝑘 = 1, 𝑑 = 0.4, 𝑤 = −5, 𝑏 = −3, and 𝑢 = 0. The orange crosses in the 

phase portrait denote the equilibrium states. Furthermore, we display on the phase portrait sample trajectories 

(solid black lines) with their initial condition marked with a black dot. 
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Figure 5: Phase portrait and time evolution of a one-dimensional, multistable harmonic oscillator with neural 

coupling for the case of 𝑘 = 1, 𝑑 = 0.4, 𝑤 = −5, 𝑏 = −1, and 𝑢 = 0. The oscillator exhibits three equilibria: two 

asymptotically stable equilibria at �̅�1 = 1 and  �̅�2 = −1, and finally an unstable equilibrium at  �̅�3 = −0.25. The 

input is deactivated with 𝑢 = 0. The orange crosses in the phase portrait denote the equilibrium states. 

Furthermore, we display on the phase portrait sample trajectories (solid black lines) with their initial condition 

marked with a black dot. 

1.4 Oscillator with position-dependent mass 

Oscillators with position-dependent mass (PDM) have great importance in many branches of 

physics and impart more complexity and richness to the dynamics. The equation of motion 

governing such oscillators is 

𝑚(𝑥𝑖) �̈�𝑖  +  𝑐(𝑥𝑖, 𝑥�̇�)𝑥�̇�  + 𝑑𝑥�̇� +  𝑘𝑥𝑖 = 𝑢𝑖, 
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where the function 𝑚(𝑥𝑖) characterizes the position-dependent mass. This equation is the 

Euler-Lagrange equation for the Lagrangian 

𝐿(𝑥𝑖 ,  𝑥�̇�)  =
1

2
 𝑚(𝑥𝑖)𝑥𝑖

2̇ −
1

2
𝑘𝑥𝑖

2  

The Coriolis component,  𝑐(𝑥𝑖,  𝑥�̇�), arise from the time derivative of the mass, 𝑚(𝑥𝑖) , as  

𝑐(𝑥𝑖 ,  𝑥�̇�)  =  
1

2
�̇�(𝑥𝑖) 

for the one-dimension case. 

An often-used generalization of the one-dimension PDM oscillator was proposed by Mathew 

and Lakshmanan (P. M. and M. 1974) as 

(1 + 𝜆𝑥𝑖
2) �̈�𝑖 − 𝜆𝑥𝑖  𝑥�̇�

2 + 𝛼2𝑥𝑖 = 0 

Where  𝜆 > 0 and 𝛼 are the parameters of the system. The position-dependent mass 𝑚(𝑥) 

depends on   

𝑚(𝑥𝑖)  =  
1

1 + 𝜆𝑥𝑖
2 

Under specific conditions, this oscillator exhibits remarkable simplicity at fixed frequencies and 

amplitudes, resembling the behaviour of a simple harmonic oscillator. 

Figure 6: Time evolution of the example position-dependent mass oscillator from the initial state (0.0, 0.5): (a) 

shows motion with different 𝜆 values (b) shows motion with different 𝛼 values. 
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Figure 7: Phase portrait of the example position-dependent mass oscillator from different initial states: (a) shows 

the case without the dissipation (b)shows the scenario with dissipation. 
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2 Connectors 

2.1 Definition 

We define a connector 𝑐 as a map from the network states 𝑦𝜈  ∈ 𝑅𝑛𝑣 and the global network 

inputs 𝑣𝑆  ∈ 𝑅𝑛𝑠 to the scalar input 𝑢𝑖  ∈ 𝑅 for the ith unit: 

 

Here, 𝑉 is a set of state indices and 𝑆 a set of network input indices. 

Therefore, connectors take the state of a subset of all units and a subset of all global inputs 

and map them in the input of one unit. 

 

2.2 Neuron-like connector 

This connector takes inspiration from neural networks and is defined as 

 

where 𝜎: 𝑅 → 𝑅 is an activation function, 𝑊 ∈ 𝑅𝑛 𝑥 𝑛𝑣 is the state-to-state coupling matrix for 

all units in the set 𝑉  and 𝐸 ∈ 𝑅𝑛 𝑥 𝑛𝑠  maps the inputs of the set 𝑆  to units in the set V. 

Furthermore, 𝑏𝑖 ∈ 𝑅 is a bias constant. 

 

Figure 7: Circuital scheme of a neuron-like connector. 

2.3 Potential coupling 

Potential energy often arises from interactions with external systems or forces. It signifies the 

energy associated with the arrangement of a system's components within the influence of 

external factors and relies on its relationship with its environment or interactions with other 
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systems. Building upon it, we introduce the concept of potential coupling forces to connect 

units. It defined as  

𝑢𝑖 =  
𝜕𝑈

𝜕𝑥𝑖
 =  ∑ 𝑢𝑖𝑗𝑗 ∈ 𝜈    

where 𝑈 denotes the complete potential energy of the system, and 𝑢𝑖 signifies the potential 

forces affecting unit i.  This potential energy often includes stiffness potential energy between 

units and the inherent gravitational potential energy of each unit. Mathematically, 𝑈 can be 

represented as a function of the configuration of units as  

𝑈 =  𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛𝑣
）. 

 

Figure 8: Scheme of the potential coupling connector. 

2.4 Hyperbolic potential with perturbation 

This connector is a specific subcase of the potential coupling. It takes loose inspiration from 

the structure of computational neurons while specializing in hyperbolic tangent activation 

functions. The connector mapping is given by 

 

where we define  𝑊 ≻ 0  as a positive-definite state-to-state coupling matrix, 𝑏 ∈ 𝑅𝑛 as the 

bias vector, and 𝐸 ∈ 𝑅𝑛 𝑥 𝑛𝑠 as the input-to-state mapping. The similarity to the neuron-like 

connector is obvious. The two differences are that a) the input is separate from the potential 

coupling, and b) that we assume 𝑊 to be positive-definite and with that also to be symmetric. 

That results in a bi-directional potential coupling between the units. 
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3 Examples of archetype networks 

3.1 A network of harmonic oscillators with hyperbolic potential coupling 

Summary: This network combines the harmonic oscillator unit with a hyperbolic potential 

connector. While we impose certain constraints on the parameters such as positive stiffness 

and damping coefficients and a positive definite state-to-state coupling matrix 𝑊,  the design 

space is still quite large and allows for a large variety of different dynamical behaviours. With 

the use of Lyapunov arguments, we can provide strong stability guarantees for the oscillator 

network. Furthermore, this network is physically implementable by connecting oscillators with 

nonlinear stiffness with linear spring-damper elements to each other. 

 

Figure 9: Block diagram of a network of harmonic oscillators with hyperbolic potential coupling. 

Definition: The dynamics of a network of 𝑁 oscillators with hyperbolic potential coupling is given 

by 
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where 𝑥, �̇�  ∈ 𝑅𝑁  are the position and velocity of the oscillators respectively. With 𝐾 =

 𝑑𝑖𝑎𝑔(𝑘1, . . . , 𝑘𝑖, . . . , 𝑘𝑁)  where 𝑘𝑖 > 0 , we describe the linear elasticity of the harmonic 

oscillators.  𝐷 = 𝑑𝑖𝑎𝑔(𝑑1, . . . , 𝑑𝑖 , . . . , 𝑑𝑁) are the strictly positive damping coefficients of the 

harmonic oscillators. We define 𝑊 ∈ 𝑅𝑁𝑥𝑁  ≻  0 as the positive-definite state-to-state coupling 

and 𝑏 ∈ 𝑅𝑁 as the bias of the hyperbolic potential. The system is actuated by the bounded 

function 𝑡𝑎𝑛ℎ(𝐸 𝑣) where 𝐸 ∈ 𝑅𝑁𝑥𝑁.  

Characterization: The unactuated system with 𝑣(𝑡) = 0  always has one globally 

asymptotically stable equilibrium �̅� = [�̅�, 0]𝑇 at the root of the equation 𝐾�̅� + 𝑡𝑎𝑛ℎ(𝑊�̅� + 𝑏) =

0. We visualize the time evolution of an unactuated network of three units in Fig. 8. 

 

Figure 10: Evolution of a network of three harmonic oscillators connected by hyperbolic potential coupling and 

𝑣(𝑡) = [0,0,0] . We choose 𝐾 = 𝑑𝑖𝑎𝑔(1,1,1), 𝐷 = 𝑑𝑖𝑎𝑔(0.2, 0.2, 0.2) , 𝑊 = [2.0, 1.0, 1.0;  1.0, 2.0, −0.5, 1.0, −0.5, 2.0], 

and  𝑏 = [0, 1, −1]. 

We can provide a proof of Input-to-State (ISS) stability (Khalil 2002, 174) using strict Lyapunov 

arguments (Wu et al. 2022). First, we conduct a change of variables: 𝑦𝑤 = 𝑊 (𝑦 − �̅�). We 

define �̅�𝑤 = 𝑊 �̅�, 𝐵𝑤 = 𝑊−1 ≻ 0, 𝐾𝑤 = 𝐾 𝑊−1, and 𝐷𝑤 = 𝐷 𝑊−1 and assume 𝐾𝑤  ≻ 0, 𝐷𝑤 ≻

0. Now, the system becomes 

 

Consider now the strict Lyapunov candidate with skewed level sets 

 

where 
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The strict Lyapunov candidate is valid for any 𝜇 satisfying 

 

where 𝜆𝑚(𝐴), and 𝜆𝑀(𝐴) are the minimum and maximum Eigenvalues and ||𝐴|| the induced 

norm of the matrix 𝐴. Here, we also defined 𝑆𝑠𝑒𝑐ℎ(𝑦𝑤) = 𝑑𝑖𝑎𝑔(𝑠𝑒𝑐ℎ(𝑥𝑤 + 𝑥𝑤 + 𝑏))  ⪰ 0. The 

Lyapunov candidate is bounded by  

 

The time derivative of the Lyapunov candidate becomes 

 

where 𝐹𝑦𝑤
𝑣 = [𝜇 𝑡𝑎𝑛ℎ (𝐸𝑣)𝑇 ,  𝑡𝑎𝑛ℎ (𝐸𝑣)𝑇]𝑇 and 

 

if 

 

We conclude that there always exists a 𝜇 satisfying 0 < 𝜇 < 𝑚𝑖𝑛{𝜇𝑉 , 𝜇�̇�}. We now aim to 

dominate the input with the quadratic term to demonstrate ISS stability. It follows with 0 < 𝜃 <

1 and 

 

that 
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Then, the system is ISS stable such that 

 

where 𝛾(𝑟) is given by 

 

 

3.2 A network of harmonic oscillators with neural coupling 

Summary: This archetypical network combines harmonic oscillators with a neuron-like 

connector. It exhibits a high degree of expressiveness in terms of dynamical behaviours by 

the means of choosing the parameters of the oscillator and the neuron-like connector. A 

unique feature of this network is that it represents both a multi-stable system and a single-

stable system depending on the choice of the state-to-state coupling 𝑊 and the bias term 𝑏. 

Additionally, we notice mixed, nonlinear terms between the actuation and the neural coupling. 

One disadvantage of the formulation is that it is challenging to prove input-to-state stability of 

the system. 
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Figure 11: Block diagram of a network of harmonic oscillators with neural coupling. A neuron with tanh activation 

function computes as a function of the current position and input 𝑣(𝑡)the external forcing 𝑢𝑖(𝑡) to the harmonic 

oscillator with stiffness 𝑘𝑖 and damping coefficient 𝑑𝑖. 

Definition: The nonlinear state space dynamics of a network of 𝑁 harmonic oscillators with neural 

coupling are given by 

 

where 𝑥, �̇�  ∈ 𝑅𝑁  are the position and velocity of the oscillators respectively. With 𝐾 =

 𝑑𝑖𝑎𝑔(𝑘1, . . . , 𝑘𝑖, . . . , 𝑘𝑁) , where 𝑘𝑖 > 0 , we describe the linear elasticity of the harmonic 

oscillators. 𝐷 = 𝑑𝑖𝑎𝑔(𝑑1, . . . , 𝑑𝑖, . . . , 𝑑𝑁)  are the strictly positive damping coefficients of the 

harmonic oscillators. We define 𝑊 ∈ 𝑅𝑁𝑥𝑁  as the weight and 𝑏 ∈ 𝑅𝑁  as the bias of the 

computational neuron. This term is mixed with the linearly mapped input 𝐸 𝑣(𝑡) where 𝐸 ∈

𝑅𝑁𝑥𝑁. 

Characterization: First, we analyse the equilibria of the unactuated archetypical unit (𝑣(𝑡) =

0). For 𝑏 = 0, the always has a single equilibrium at �̅� = 0. If 𝑏 ≠ 0 and 𝑊 = 0, the system has 

a single equilibrium at  �̅� = 𝐾−1 𝑏. Furthermore, if 𝑏 ≠ 0 and 𝑊 ≻ 0, the system has again one 

equilibrium. Finally, if 𝑏 ≠ 0 and 𝑊 ≼ 0, the system becomes multistable for certain choices of 

𝑏.  

To perform a stability analysis of the archetypical network at hand, we applied a widely known 

technique in the context of Reservoir Computing (RC) systems (Ceni, et al. 2023). Specifically, 

we impose the linearised system to be a contraction mapping. Namely, we impose the 

Euclidean norm of the Jacobian to be less than 1. This condition is sufficient to imply the 

existence and uniqueness of a uniformly asymptotically stable input-driven solution. We 

derived the following result: 

 ||𝐽𝑘|| ≤ max(𝜂 + 𝜏2𝜎,  𝜉) + 𝜏 max(𝜉,  𝛾max + 𝜎).  

In such upper bound, 𝜏  is the discretisation time step, while 𝜉 = max
𝑗

|1 − 𝜏 𝑑𝑗|  ,  𝜂 =

max
𝑗

|1 − 𝜏2 𝑘𝑗| , 𝛾𝑚𝑎𝑥 = max
𝑗

𝑘𝑗  , and 𝜎 = ||𝑊|| . However, imposing such a strong stability 

condition of contractivity constrains the archetypical unit on a too narrow region of 

hyperparameters, effectively compromising the expressive power of the model. Therefore, 

although not sufficient for ensuring stability, we looked for weaker necessary conditions for 

stability based on the eigenvalues distribution of the linearised system. We demonstrated the 

following result. 

Theorem. For all 𝜇  eigenvalues of the linearised system, there exists a point 𝜆  ∈

 {1 − 𝜏2 𝑘𝑗 ,  1 − 𝜏 𝑑𝑗}
𝑗=1

𝑁
 such that  

 |𝜇 −  𝜆| ≤ 𝐶, 

where 𝐶  = 𝜏2𝜎  +  𝜏  max(𝜉,  𝛾𝑚𝑎𝑥  +  𝜎). 
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Inspired by the edge of stability principle of computation, we searched for conditions allowing 

the eigenvalues of an input-free neural network to stay inside or at most at the boundary of 

the unit circle. The resulting necessary conditions are: 

if 𝜎  >  𝜉 −  𝛾𝑚𝑎𝑥 ,  then 𝜎  ≤
1−𝜏 𝛾𝑚𝑎𝑥

𝜏+𝜏2  ; 

if 𝜎  ≤  𝜉 −  𝛾𝑚𝑎𝑥 ,  then 𝜎  ≤
1−𝜏 𝜉

𝜏2  . 

We also derived necessary conditions on the stiffness and damping coefficients; namely, all 

of them being non-negative, while the maximum stiffness being less than the reciprocal of the 

discretisation time step, and the maximum damping coefficient being less than the squared 

reciprocal of the discretisation time step. We used all these weaker conditions as guideline 

values for training the neural network. Strikingly, the neural network was able to outperform 

standard RC models in classification tasks requiring long short-term memory while performing 

as good in forecasting of chaotic dynamical systems. 

3.3 A network of PDM oscillators with potential coupling 

Summary: PDM oscillators network contains the multiple PDM oscillators as units which are 

coupled by potential coupling connectors. The dynamics of the PDM oscillators are 

represented by the decoupled Euler-Lagrangian equation. We are interested in understanding 

if a small set of PDM oscillators is expressive enough to approximate the dynamic behaviour 

of a multi-body mechanical system (e.g., an n-pendulum). We approach the challenge by 

starting from the generic coupled system and propose a way of decoupling the mass resulting 

into an archetype network, defined as a collection of distinct and independent PDM oscillator 

units.  

Definition: The dynamics of an unforced, n-link pendulum are given by  

      

where 𝑂  is the number of links and 𝜉 ∈ 𝑅𝑂  is the position (e.g., angles) of the links. 

Furthermore, 𝑀 ∈ 𝑅𝑂×𝑂 is the inertia matrix,  𝐶 ∈ 𝑅𝑂×𝑂 collects the Coriolis and centrifugal 

effects, and 𝐺 ∈ 𝑅𝑂  is the gravity vector. We propose an encoder 𝜖: 𝜉 → 𝑥 that can find a 

mapping between the pendulum state 𝜉 and the PDM oscillator configuration 𝑥 ∈ 𝑅𝑁 and is 

also differentiable. The encoder facilitates the discovery of latent space dynamics that can be 

expressed by independent PDM oscillators. This, in turn, enables a refined analysis within a 

reduced-order space when 𝑂 > 𝑁 or via the utilization of simplified dynamics equations. The 

encoder function allows us to find a relation between �̇� and �̇� as 

�̇�  =  
𝜕𝜖

𝜕𝜉
�̇�  =  𝐽𝜖(𝜉)�̇� 

where 𝑥 ∈  𝑅𝑁, �̇�  ∈  𝑅𝑁 is the position and velocity of all the PMD oscillators. Subsequently, to 

effect the inverse transformation from the latent space back to the original space, we deploy a 

decoder as D. This decoder maps from 𝑥 → 𝜉, thereby enabling us to obtain derivatives of the 

original state by 



 

 
WP3 

D3.1 Archetypes: Units and Connectors  

 

 

 

 
 

Funded by the European Union under Grant Agreement 101070918. Views and opinions 

expressed are however those of the author(s) only and do not necessarily reflect those of the 

European Union or European Innovation Council and SMEs Executive Agency (EISMEA). 

Neither the European Union nor the granting authority can be held responsible for them. 

   23  

 

�̇�  =  
𝜕𝐷

𝜕𝑥
�̇�  =  𝐽𝐷(𝑥)�̇� 

This encoder-decoder framework allows a comprehensive exploration of the latent space 

dynamics while maintaining a connection to the original space. The encoder-decoder 

framework can take various forms, including Principal Component Analysis (PCA), Linear 

Regression, interpolation methods, or neural networks. In our specific examples, we employ 

neural networks as both the encoder and decoder. The loss function to train the encoder and 

decoder networks contains the following four parts:  

 

The first part of the loss ensures the diagonal structure of the new mass matrix in the latent 

space. Since 𝑀(𝜉) is positive-definite, the second part, the relationship 𝐽𝜖(𝜉)−1 = 𝐽𝜖(𝜉)𝑇 , will 

always remain valid. The final two components of the loss function are designed to capture 

the reconstruction error.  After the coordinate transformation, the diagonal elements of the 

new mass matrix are still dependent on all configuration variables, so the Coriolis matrix still 

couples across these oscillator variables. The system's equilibrium point is utilized to 

approximate a decoupled Coriolis matrix. 

      

where 𝑥 ̄ is defined as �̄�  =  𝜖(�̄�) and 𝜉 ̄  is the system’s equilibrium point.

 

Figure 12: Block diagram for the computation of the PDM oscillator dynamics: the pendulum state, denoted as (𝜉, 

𝜉)̇ ,  is mapped by an encoder (𝜖) into a PDM oscillator state, represented as (𝑥, �̇�) . The state at the next time step 
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is computed by integrating �̈� with a fourth-order Runga-Kutta. The pendulum's future state is then recovered by a 

decoder (D). 

Characterization:  

To evaluate the effectiveness of this framework, we use it for analysing the latent space 

dynamics of a few nonlinear systems such as the double pendulum, and a triple pendulum. 

The double pendulum system is a classic example of a simple mechanical system that exhibits 

complex and chaotic behaviour. It consists of two connected links, where each pendulum can 

swing freely in response to gravity and the motion of the other pendulum. The dynamics of the 

double pendulum are characterized by a coupling between its states, 𝜉
1
 and 𝜉2. Some sample 

time evolutions are shown in Figure 13. 

 

Figure 13: double pendulum simulation of 60 seconds duration with initial condition as(𝜉1(0), 𝜉2(0), 𝜉1̇ (0), 𝜉2̇ (0)) = 

(
𝜋

2
, 0, 0, 0) : (a) is the initial state of the  simulation; (b) is the double pendulum trajectory; (c) is the time series plot 

of the state 

The approximation of its motion can be achieved by employing PDM oscillators. The 

predictions of the PDM oscillators relative to the equilibrium point together with the actual 

system behaviour are shown in Figure 14. 
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Figure 14: Double pendulum prediction results of the PDM oscillator network over 5-second interval simulation 

from the initial conditions (0.5, 0.5, 0.0, 0.0) 

Given that the equilibrium point is employed for approximation, states closer to the equilibrium 

point yield more precise results. A similar predictive performance is evident in the case of the 

triple pendulum example in Figure 15, with a slight decrease in accuracy due to the 

considerably more intricate dynamics involved. 

 

Figure 15: Triple pendulum prediction results of the PDM oscillator network over 5-second interval simulation 

from the initial conditions (0.5, 0.5, 0.5, 0.0, 0.0, 0.0) 
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4 Towards an archetype-based computing and adapting system 

The units and connectors defined so far, as well as the resulting networks, provide a 

substrate that can be used for computation and learning purposes. Networks of oscillatory 

units are particularly expressive (Rusch and Mishra 2021), hence particularly interesting for 

computational purposes. The full Archetype Computing System (ACS) and Archetype 

Adapting System (ADS) will be developed in WP4. Here, we briefly discuss the key points 

where the units/connectors and the ACS/ADS meet. 

Computing with archetypes (ACS). The purpose of the ACS is to define how the units and 

connectors can be used to perform useful computation. The archetype units all define 

dynamical systems that evolve over time. The trajectory of a unit is therefore a direct 

response to the unit’s state. The connectors include an externally provided input signal (the 

global network inputs 𝑣𝑠) that contributes to alter a unit’s state.  

In the ACS, computation can be performed by taking a set of units and connectors (i.e., a 

network) and by driving the network with the external input signal. The evolution of the state 

of the network, that is the joint evolution of all units, represents computation. Notwithstanding 

the network implementation, either in a digital or in an analogic/physical device, one can 

always monitor the evolution of the network’s state in response to the input signal. The result 

of a computation performed over a time interval (discrete or continuous) is the output signal 

represented by the network’s trajectory. This signal can be used to infer different properties 

of the input, for example by clustering the output trajectories in a low-dimensional space that 

contains semantic information about the different inputs. While the input space is often noisy, 

the state space of the trajectories usually allows to grasp qualitative and quantitative 

properties associated to the input.  

Moreover, as discussed before, the formal definition of units and connectors allows to derive 

precise bounds on the behaviour of a given network, for example in terms of its stability or in 

terms of its state convergence properties (presence of attractors, types of attractors). While it 

is not possible to know in advance where a given input will drive the network trajectory, it is 

possible – and useful – to outline the set of possibilities for the network’s evolution.  

Computation is a first, fundamental step to study and use the archetypes defined in this 

document. One example of such kind of computation is represented by the Random 

Oscillators Network (RON) model (Ceni, et al. 2023) where a network of harmonic oscillators 

archetypes combined with hyperbolic potential connectors is shown to be able to solve a 

wide variety of different time-series tasks (e.g., classification, forecasting). 

Learning with archetypes (ADS). The archetype units and connectors all depend on a set 

of parameters that control their behaviour. For example, a harmonic oscillator has 

parameters controlling the amount of damping and frequency of oscillation, while a neuron-

like connector has parameters controlling the relative importance (weight) of the external 

input and of the internal network’s state. These parameters highly influence the computation 

performed by a network. Consequently, being able to tweak these parameters towards 

interesting and useful configuration would allow to “train” the network to solve a particular 

problem. This is the objective of learning: finding a configuration of parameters that exploits 

the computation performed by a network for a certain objective. Learning in the ADS can be 

done in different ways: from gradient-based optimization of the parameters (LeCun, Bengio 

and Hinton 2015) to evolutionary algorithms that iteratively compare and select the best 

versions of a network among a set of candidate ones (Stanley, et al. 2019). Interestingly, the 
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networks presented so far are all compatible with both forms of learning procedures. Existing 

techniques to learn with artificial neural networks can be directly used in this context (e.g., to 

train a network of harmonic oscillators with neural coupling) (Rusch and Mishra 2021) (Keller 

and Welling 2023), while new ones can be designed according to specific needs.
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Appearing in 

In the following, we will list the content in this deliverable that has been already or is in 

preparation to be published in scientific proceedings or journals: 

• Section 3.1: A work involving a physically implementable network of harmonic 

oscillators with hyperbolic coupling is currently under preparation for a journal 

submission (Ceni et al., under preparation) 

• Section 3.2: The network of harmonic oscillators with neural coupling was presented 

at the ICML 2023 workshop on New Frontiers in Learning, Control, and Dynamical 

Systems (Ceni et al., 2023, Frontiers4LCD). This piece of research with an expanded 

experimental verification was also submitted to the 38th Annual AAAI Conference on 

Artificial Intelligence 2024 and is currently under review (Ceni et al., AAAI 2024). 

Ceni, Andrea, Andrea Cossu, Jingyue Liu, Maximilian Stölzle, Cosimo Della Santina, Claudio 

Gallicchio, and Davide Bacciu. 2023. Randomly Coupled Oscillators for Time Series 

Processing. N.p.: ICML 2023 Workshop Frontiers4LCD. 

https://openreview.net/forum?id=fmn7PMykEb. 

 

Andrea Ceni, Andrea Cossu, Maximilian Stölzle, Jingyue Liu, Cosimo Della Santina, Davide 

Bacciu, and Claudio Gallicchio, Random Oscillators Network for Time Series Processing, 

AAAI 2024, under review 

 

Andrea Ceni, Andrea Cossu, Maximilian Stölzle, Jingyue Liu, Cosimo Della Santina, Davide 

Bacciu, and Claudio Gallicchio, Randomly Coupled Oscillators Networks for Time Series 

Processing, under preparation. 

 

https://openreview.net/forum?id=fmn7PMykEb
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