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Abstract 

Artificial systems are increasingly deployed in environments shared with humans and diverse 

artificial agents, making the ethical and effective collaboration between these entities a 

pressing concern. To address this, EMERGE advocates for the implementation of 

collaborative awareness in artificial systems. This approach extends beyond local awareness, 

highlighting the emergent group-level properties that support collaborative behaviour. By 

enhancing communicative abilities, these systems can achieve coordination and cooperation, 

crucial for working effectively within heterogeneous collectives. For both end-users and the 

public to trust and effectively utilise these systems, robust tools for describing and evaluating 

their collaborative capabilities are essential. 

This report introduces a refined multidimensional framework for collaborative awareness in 

artificial systems, detailing potential measures for assessing and differentiating the 

collaborative abilities of various agents or collectives. It elaborates on the dimensions of 

awareness outlined in EMERGE, explores the formulation and comparison of awareness 

profiles, and integrates these concepts into a multidimensional awareness framework. 

Additionally, it discusses the roles of emergence and information sharing, culminating in a 

theoretical and conceptual toolkit for measuring and evaluating collaborative awareness, 

informed by insights from ethology, game theory, neuroscience, social psychology, and swarm 

robotics. 
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Executive Summary 

This document is a deliverable of the EMERGE project, funded under grant agreement number 

101070918.  

This deliverable, “D1.3 Dimensions of collaborative awareness”, reports on the activities of 

WP1 “Conceptual framework” which aims to elaborate and refine a new framework for 

collaborative awareness tailored for a set of heterogeneous agents.  

In this document, we refine the multidimensional framework of awareness and integrate the 

concepts of collaborative awareness into it. Moreover, we explore existing approaches and 

measures to distinguish and assess collaborative behaviours from ethology and sociobiology, 

evolutionary game theory, neuroscience, social psychology, and swarm robotics.  

1. Introduction 

Consider a forest engulfed in a massive wildfire. To combat this unfolding natural disaster, fire 

departments and government agencies deploy numerous teams of heterogeneous robots. 

Some robots specialize in sensing and tracking the fire's movement, identifying the best spots 

to target. Others focus on coordinating the actions of various robots and human firefighters. 

Drones are soaring above, dropping water or fire-retardant chemicals to extinguish the blaze, 

while on the ground, autonomous intervention vehicles and human firefighters work side by 

side to contain the fire. This is a glimpse into the future of collaborative efforts between artificial 

agents and humans. 

The development and exploration of such multi-agent, heterogeneous firefighting teams are 

well underway (Innocente and Grasso, 2019; McConville, 2024; Roldán-Gómez et al., 2021; 

Seraj et al., 2019; Tzoumas et al., 2023, 2024). Each robot in this scenario is designed for a 

specific task, built with its (potentially) unique architecture, and developed by a particular 

brand. Yet, for the team to function effectively, these robots must coordinate their efforts and 

collaborate both with each other and with human firefighters. Moreover, the success of these 

operations hinges on the human firefighters' ability to trust and rely upon the set of robotic 

systems—potentially with their lives, as well as the lives of the residents in the affected area. 

This high-stakes scenario is here to highlight a much more common problem: the collaboration 

of multiple domain-specific systems – between themselves, with human collaborators, and 

with users - while operating in shared spaces.  

Beyond the practical and technological hurdles of ensuring successful cooperation and 

coexistence, numerous ethical issues also emerge, particularly in high-stakes situations like 

the one described. To build trust and ensure the effective use and reliance on such systems 

by both end-users and the general public, it is not enough to simply deploy robotic teams; we 

must also develop robust tools to describe and evaluate them comprehensively – especially if 

we expect people to rely on them in high-stakes scenarios.  

This entails two objectives.  

First, to elaborate clear and precise language to avoid miscommunication and prevent 

misleading descriptions of these systems (Bones et al., 2021; Deroy, 2023; Dorsch and Deroy, 

2024a; Dorsch and Deroy, 2024b).  

Second, to provide tools for a rigorous assessment, which facilitates informed ethical use and 

effective policy regulations of these systems (Winfield, 2019).  



 
WP1 Conceptual framework 

D1.3 Dimensions of collaborative awareness 
 
 

 

  
 

Funded by the European Union under Grant Agreement 101070918. Views and opinions expressed are however those of the 

author(s) only and do not necessarily reflect those of the European Union or European Innovation Council and SMEs Executive 

Agency (EISMEA). Neither the European Union nor the granting authority can be held responsible for them. 
   9  

 

In previous deliverables and papers, EMERGE has addressed these two objectives at 

individual and collective scales. In D1.1, we introduced an operational concept of awareness, 

distinct from consciousness - with which it has often been conflated (see also Deroy et al., 

2024). Integrating awareness into artificial systems allows for a shift away from centralised 

control, promoting local, autonomous, and adaptive functioning at both the individual and 

group levels. This approach can enhance efficiency, resilience, and flexibility (D1.1 local 

awareness criteria). 

To facilitate collaboration among individual, potentially heterogeneous agents, we introduced 

the concept of collaborative awareness. This operational and ethically tractable concept 

captures the collaborative capacities that emerge at the group level (D1.2 demarcating 

collaborative awareness from related concepts). Our aim is to address the challenges of 

operating domain- or task-specific multi-agent heterogeneous systems in shared spaces – 

ensuring that these systems can be safely relied upon by human collaborators and users. 

Introducing collective awareness in systems of collaborating narrow agents is a solution to 

enable easier monitoring and interfacing between the artificial systems and human users (see 

Fig. 1 below).  

This report tackles two key questions. First, how can we develop a multidimensional 

framework for understanding collaborative awareness? How do we define it, and how can we 

integrate it with the dimensional model of awareness introduced in D5.1, which focused on 

measuring emergent awareness? Second, what are the most effective methods for assessing 

the degree of awareness within collectives?  

To answer these questions, we propose a theoretical and conceptual toolkit for measuring 

collaborative awareness. This toolkit operates a translation of methods from ethology, 

(evolutionary) game theory, neuroscience, and psychology. By addressing these questions, 

this report aims to not only deepen our understanding of collaborative awareness but also 

advance its practical application in multi-agent systems.  

 

Figure 1: Features of collective awareness by Deroy et al. (2024). 

2.  A multidimensional framework for awareness  

2.1 Dimensions of awareness 

The notions of consciousness and awareness have often been used interchangeably, with 

awareness considered as part of a broader concept of consciousness, or awareness is 
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employed in defining consciousness. While some distinctions have been drawn between the 

two, they remain unclear - particularly when it comes to operationalizing these concepts within 

artificial intelligence. The EMERGE project addresses this ambiguity by introducing a 

redefined concept of awareness, one that does not concern itself with the subjective 

experiences or 'inner lives' of artificial systems. Instead, it focuses on the capacities these 

systems can be given to adapt and navigate an ever-changing, complex environment. This 

new approach shifts attention away from what it might be like for an organism or system to 

experience something, and instead examines the abilities it has to interact with itself, its 

environment, and others - structured across various dimensions (Meertens, under review). 

A dimensional approach was selected because it allows for a structured yet flexible 

investigation into the similarities and differences between systems, without imposing a rigid 

hierarchical structure or overlooking their uniqueness (see D1.1 Local awareness criteria). 

This multidimensional method stands apart from other approaches in cognitive science (Bayne 

et al., 2016) by offering a more fine-grained analysis that captures both the independence and 

interdependence of various aspects or capacities of awareness. For example, a swarm of 

drones and an artificial neural network (hereafter ANN) cannot be assessed in the exact same 

way - evaluation criteria designed for one may be misleading or entirely uninformative for the 

other. However, by adopting a more open, general, and additive approach, meaningful 

comparisons between such systems become possible. This mirrors existing approaches in 

philosophy of mind and ethology which engage in comparisons of cognitive abilities across 

species (Birch et al., 2020; Browning, 2023). 

Building on the idea that awareness cannot be directly assessed but should instead be 

evaluated functionally - by observing the behaviour it enables - we propose associating each 

dimension of awareness with a range of capacities or abilities. These capacities are 

understood as properties of a system that contribute to its success in performing associated 

tasks, as measured by various performance metrics (see D5.1 Measuring emergent 

awareness). Performance, in this context, is seen as graded, highlighting the differences when 

a capacity is present versus absent. For example, in section 6, we will explore how spatial 

awareness can be evaluated in a swarm of robots by measuring their capacity to form a 

Distributed Reference Frame and how this improves performance in a swarm logistics task 

(see Jones and Hauert, 2024). This framework allows for the comparison and measurement 

of awareness across different artificial systems, though the precise dimensions to be 

considered remain an open question. Various dimensions of awareness discussed in the 

cognitive science literature were explored in D1.1; however, not all of these are consistent with 

one another, nor are they easily operationalized or suited for minimal systems that lack 

language capabilities. So, which dimensions might be worth exploring in greater depth, even 

if only tentatively? 

Temporal awareness refers to an artificial system's ability to perceive, and act upon time-

related aspects of its environment, its own actions, and others. This includes the capacity to 

recognize and respond to the timing of events, anticipate future states based on past 

experiences, and coordinate actions in relation to temporal factors. Temporal factors to 

consider here are: continuity, duration, simultaneity, persistence, change, succession, and an 

experience (flow) of past, present and future (Dainton, 2013; LePoidevin, 2019). In artificial 

systems, temporal awareness enables effective management of tasks that depend on timing, 

such as synchronising with other agents, predicting future occurrences, and adapting to 

changes over time.  

In biological organisms, temporal perception plays a critical role in cognition (Varela, 1999), 

especially in conditioning and reinforcement learning (Gallistel and Gibbon, 2000). Temporal 
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perception is also crucial for embodied and bio-inspired robotics (Maniadakis et al., 2009), as 

well as for multi-agent systems, particularly those involving human-robot interaction 

(Maniadakis et al., 2020) and heterogeneous teams of agents (Maniadakis et al., 2016). 

Research into temporal awareness in artificial systems has led to the development of 

mechanisms that enable systems to perceive and discriminate time durations. For instance, 

Maniadakis et al. (2009) evolved a Continuous Time Recurrent Neural Network (CTRNN) as 

a mechanism for time perception, applying it to a rule-switching task where a simulated agent 

adapted its behaviour based on changes in the environment, with varying durations across 

trials. Similarly, Lourenco et al. (2020) tested a simulated robot agent in a task inspired by 

Soares et al.'s (2016) research on mice, where the agent had to discriminate between shorter 

and longer time intervals. These studies demonstrate some possible ways of operationalizing 

temporal awareness in artificial systems, opening up opportunities for more advanced 

adaptive and responsive behaviours in dynamic environments. Implementing temporal 

awareness in artificial systems can take the shape of introducing a simple mechanism such 

as clock or standard time, to more complex mechanisms and abilities.  

Spatial awareness refers to an artificial system's ability to perceive, process, and respond to 

its physical environment in relation to its own position and the positions of other entities or 

objects within that space. In artificial systems, this involves the capacity to navigate, localise, 

or coordinate movement or actions effectively by understanding spatial relationships. This 

ability enables systems to adapt dynamically to environmental changes, optimise task 

performance, and collaborate with other agents or humans in shared environments. Other 

capacities relevant to this dimension might involve sensing abilities to detect and interpret 

spatial features, obstacle avoidance, tracking others in the environment, awareness of 

proximity of others, as well as mapping the environment.   

On a minimal level, artificial systems can rely on GPS for basic location tracking. Beyond this, 

robots could reply on feature-based localisation strategies, where the robot identifies and 

maps environmental features (e.g. Jones and Hauert, 2023). More advanced systems could 

rely on the capacity of Simultaneous Localisation and Mapping (SLAM). If an autonomous 

robot finds itself in an unfamiliar environment, with no existing GPS data available it needs to 

localise itself and work on constructing an incremental map of its environment – ideally at the 

same time (Saeedi et al., 2015). Saeedi et al (2015) point out how this only becomes more 

challenging when we consider robot teams, or an environment entailing multiple robots – 

especially if this concerns a distributed system (distributed SLAM, or DSLAM). However, such 

a distributed swarm will also provide more robust and potentially faster results (Birk and 

Carpin, 2006). The firefighting example from the introduction describes exactly such an 

application where SLAM or DSLAM would be a highly valuable capacity.  

Metacognitive awareness refers to an artificial system's ability to monitor, assess, and 

regulate its own processes. This involves being aware of information it has available to it, 

decision-making processes, and problem-solving strategies, as well as the ability to adjust 

these processes when necessary. Metacognition construed as such is primarily self-directed. 

In artificial systems, metacognitive awareness could allow for self-evaluation, error detection, 

and the capacity to adapt strategies in real-time to improve performance or overcome 

challenges both individually and on a group level. On a minimal level this entails a capacity to 

provide confidence ratings for the decision or actions the system takes, and possibly an ability 

to opt-out of acting should this confidence rating be under a given (or learned) threshold. 

Another important concept in this context is mentalizing or mindreading, which involves the 

ability to engage with the mental states of others, making it inherently other-directed. The 

exact definitions of these terms, as well as their relationship, are subjects of significant debate 

(Proust, 2014). However, it is widely accepted that, for humans, the ability to monitor and 
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respond to the mental states of others plays a crucial role in facilitating collaboration (Frith, 

2012). In this field, a distinction is often made between explicit (verbal) and implicit (nonverbal) 

uncertainty monitoring. Additionally, in the study of animal cognition, there is an ongoing 

debate about whether observed behaviours should be interpreted as behaviour-reading or as 

evidence of (minimal) mindreading abilities (Buckner, 2014; Heyes, 2015; Lurz; 2015; 

Strasser, 2018). 

Artificial systems are becoming increasingly complex, potentially giving rise to new problems 

in the collaboration or coexistence between heterogenous systems. However, this complexity 

raises even more pressing concerns when it comes to Human-Machine Interactions (HMI). 

Johnson (2022) suggests that implementing metacognition could be one was of addressing 

numerous safety and ethical concerns that arise. The starting point of such an approach can 

be located in implicit uncertainty monitoring and an ensuing fail-safe or opt-out mechanism. It 

would enable an AI system to prevent critical failures via self-diagnosis (Johnson, 2022). 

Moreover, implementation of decision confidence ratings or modulations in learning algorithms 

could vastly improve their efficiency and functioning in day-to-day decisions (Drugowitsch et 

al., 2019). Another existing implementation of metacognitive awareness in artificial systems is 

work of self-monitoring in autonomous systems (Mörwald et al., 2011; Chiba et al., 2020) 

Agentive awareness has been discussed in various competing ways in cognitive science and 

philosophy, often referring to the phenomenology of agency, a sense of agency, the 

awareness of one’s own actions, or the recognition of oneself as the agent currently acting 

(Bayne, 2011; Mylopoulos, 2017). In this view, agentive awareness is considered a specialized 

form of self-awareness (Bayne and Pacherie, 2007). These competing accounts primarily aim 

to capture a specific human experience, with phenomenal consciousness as a prerequisite. 

As a result, they have limited applicability to nonhuman animals or artificial systems. 

To address this limitation, we propose that agentive awareness can be understood as having 

two layers: pre-reflective and reflective. Reflective agentive awareness aligns with traditional 

notions, where a system recognizes itself as the actor in a given situation, monitors its actions, 

and adjusts them if they do not align with its goals. This involves a higher-order evaluation of 

its performance and a capacity to correct errors. However, pre-reflective agentive 

awareness does not depend on self-reflection or explicit mental representation. Instead, it is 

a more immediate awareness of the world in terms of Gibsonian affordances (Gibson, 1979), 

where the system perceives the environment, itself, and others as presenting opportunities or 

constraints for action. This minimal form of pre-reflective agentive awareness allows a system 

to continuously evaluate its surroundings, dynamically adapt its behaviour, and interact with 

other agents based on how the environment and those agents afford certain actions. This 

enables the system not just to recognize objects or agents, but to perceive the potential actions 

they make possible, how those actions relate to its own goals, and how to influence or respond 

to the actions of others. 

Much more can be said on this approach to agentive awareness, specifically the tension 

between representational accounts and Gibsons direct perception view (Chemero and Turvey, 

2007). Despite this the ecological affordance-based component has already found popularity 

in robotics (Ardón et al., 2020; Horton et al., 2012).  

Self-awareness in artificial systems, particularly its minimal instantiation of bodily 

awareness, refers to the system's ability to monitor its own physical states. In biological terms, 

this involves among other things body maps and proprioception, the system's capacity to 

perceive the position, movement, and orientation of its body or parts relative to its 
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environment. Proprioception enables smooth, coordinated actions and self-regulation of 

movement.  

Additionally, bodily self-awareness includes error or fault recognition, where the system 

detects discrepancies between its expected and actual physical state, such as malfunctions, 

or damage. In biological organisms the ability to detect noxious stimuli and bodily damage is 

referred to as nociception. For an artificial system such a capacity for detecting ‘injury’ might 

enable it to make real-time adjustments and signal the need for intervention. Beyond this 

passive monitoring, we can also distinguish more a more active approach. In cognitive science 

predictive processing theories explore how human beings (and possibly animals and AI) do 

not just interact passively with sensory input, but also actively predict sensory input before it 

arrives (Clark, 2015). This entails a pro-active engagement, where the system predicts its 

future state, is poised to act, and only then processes any potential deviations from the 

prediction. Understood in this sense bodily awareness need not be interpret as entailing only 

passive monitoring but could also built on active prediction. 

Together, these capacities enable artificial systems to maintain effective and autonomous 

operation, especially in complex, dynamic environments. One example of such an application 

can be found in soft robots. Soter et al. (2018) implement bodily awareness through integration 

of exteroceptive and proprioceptive sensors. Their octopus-inspired arm uses four bend 

sensors in its soft body for proprioception, and a camera that records the movement of the 

arm for exteroception.  

2.2 Integrating dimensions of awareness 

This tentative description of the dimensions we aim to explore in EMERGE is not meant to be 

exclusive or all-encompassing. We want to point particularly at three different cases:  

(1) Missing dimensions: other dimensions might be needed to capture abilities not 

addressed here.  

  

(2) Relation between dimensions: the relations between these dimensions are yet to be 

determined, as they are likely to be related. Psychologists distinguish here between 

integral and independent dimensions. Integral dimensions often work together and are 

hard to separate because they form part of a unified experience. When you observe 

an object moving, for example, you are simultaneously aware of its position and the 

time over which the movement occurs. This suggests that spatial and temporal 

awareness go hand in hand. Independent dimensions, on the other hand, can function 

separately. For example, certain artificial neural networks (ANNs) have shown the 

ability to recognize the passage of time or duration without needing spatial awareness. 

This demonstrates that temporal awareness can exist independently of spatial 

capacities. 

 

Understanding when dimensions are integral or independent and for which system can 

help clarify how different instantiations of awareness operate within different systems, 

and how they may differ from biological or human cognition.  

 

(3) Emergence of new dimensions: One area where the idea of emergence comes to 

light is with agentive and self-awareness, which come together is in the coordination 

of complex actions within shared environments. For both biological organisms and AI, 

this involves an understanding of the agent’s own body and capabilities (self-

awareness). However, it also entails the ability to initiate and control actions based on 

the awareness of one’s own goals, goals of others in the shared space, potential 
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shared goals, and input from the environment in terms of the potential actions it 

enables for different agents (agentive awareness). Awareness of peripersonal space 

can emerge from awareness of self and agentive awareness. Peripersonal space 

refers to the immediate area surrounding the body that an individual perceives as part 

of their personal space—essentially, the zone where objects or actions directly impact 

the body. For biological agents, this space is key to bodily awareness and survival, as 

it allows them to react quickly to threats or opportunities within their immediate 

environment. In humans, this involves complex neural processes that integrate 

sensory inputs, such as vision, touch, and proprioception, to create a real-time map of 

the body’s location relative to external objects.  

 

For AI and robotic systems, modelling peripersonal space is equally important. 

Autonomous agents need to understand their own boundaries in relation to their 

surroundings to act and interact effectively, whether avoiding obstacles or 

manipulating objects. Developing more sophisticated models of peripersonal space 

could significantly enhance the effectiveness of AI in complex, multi-agent interactions, 

helping them better navigate and cooperate in shared physical spaces. 

2.3 Comparing awareness profiles  

The evaluation of an artificial system on each of the dimensions, by associating them with 

capacities and associated tasks and metrics, can be merged into a dimensional model of 

awareness (see figure 2 and 3 below). Once enough data has been gathered along each 

dimension for a given artificial system a profile of awareness can be generated. This profile 

can then be compared to that of other similar artificial systems, or heterogenous (artificial) 

systems regarding both the overall “area” (quantity of awareness) and shape.  

1. Comparisons of awareness profiles between similar systems are more feasible on the short 

term and gives rise to a more informative comparison. For instance, if we have three different 

soft robots that operate on a similar architecture their performance can be compared using 

the same experimental paradigms therefore generating a degree of awareness along each 

dimension between 0 and 1 which can fairly be compared. This could potentially generate the 

awareness profiles as illustrated in figure 2.  

2. Comparisons of heterogeneous (artificial) systems are possible but will either offer more 

general, less detailed insights or require the use of experimental paradigms typically suited 

for cross-species comparisons. Generating awareness profiles for such “interspecies” 

comparisons would result in figures like figure 3 (below).  

Figure 2: Hypothetical awareness profiles differentiated by artificial systems of different 'species'. Each spine of the 
graph represents an axis corresponding to a dimension of awareness, where the values along these axes reflect 

relative measures of the system’s capability on a relative scale rather than in specific units. 
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The first route to constructing such a figure involves comparing systems either at the level of 

the task or at the level of the capacity.  

For task-based comparisons, experimental paradigms broadly applicable across systems, 

as used in comparative cognition, can be utilized. Many tasks, like the mirror/mark test, 

duration tasks, and false belief tasks, have been applied to a variety of nonhuman animals, 

humans, and artificial systems. 

For capacity-based comparisons, a detailed description of a target behaviour or ability is 

needed, along with criteria to assess the presence of this ability. These criteria could then 

result in various tasks that are formulated with a specific species in mind yet could be 

reasonably compared to other tasks aimed at the same capacity or behaviour.  

For instance, Clayton and Dickinson’s (1998) study on ‘episodic-like memory’ in scrub jays, 

which built on natural food-storing behaviour by the birds. The birds were trained with peanuts 

and wax worms. They could retrieve the food items after either 4h or 124h, the nuts would last 

until the 124h mark, but at that point the worms would be ‘rotten’ (made to taste unpleasant). 

The task for the birds then entailed remembering what was stored where, and when this 

occurred. Clayton and Dickinson picked out a target behaviour, namely episodic-like memory, 

and they selected criteria for this, namely recollection of ‘what’, ‘where’ and ‘when’. These 

criteria have since been studied in other beings, including rats (Babb and Crystal, 2006), 

bottlenose dolphins (Davies et al., 2022), young children (Newscombe et al., 2014), and robots 

(Stachowicz and Kruijff, 2012). 

The second route builds on the first but doesn’t require a detailed awareness profile. 

Dimensional frameworks in consciousness (e.g., Birch et al., 2020; Dung and Newen, 2023) 

often use cross-species comparisons, although tasks may need to be adapted for different 

animals. By testing various abilities along the same dimensions—for instance, assessing 

spatial awareness in both an ANN and a soft robot—we can create awareness profiles for 

each. Even if the tasks aren’t identical, we can gauge how well each system performs. For 

example, if the soft robot excels in 4 spatial awareness tasks while the ANN succeeds in only 

1, we can infer stronger evidence of spatial awareness in the robot compared to the monkey. 

Though such comparisons are not fine-grained and lack precision, they can still be valuable, 

especially for ethical and policy considerations. 

An example that captures both the challenges and ethical implications of cross-species 

comparisons can be located in work on pain capacity, this is the difficulty of translating pain 

research findings from animals, like rodents, to humans. As Cobianchi et al. (2014) explain, 

while rodent models are foundational to understanding pain mechanisms, there are often 

significant species differences that can complicate our understanding of how pain operates 

across different organisms.  

Frameworks that have been developed for comparing welfare across different species in a 

scientific and ethical context, such as the mirror/mark test and duration tasks, offer a pathway 

forward. These tests, which have been applied to animals like chimpanzees, dolphins, and 

elephants, help assess higher cognitive abilities linked to awareness and potentially pain 

perception. 

In situations where empirical data cannot conclusively establish the intensity of pain across 

species, assigning moral weights offers a practical alternative. This method allows decision-

makers to assign relative importance to different species (or agents) based on ethical 

considerations, such as their capacity for welfare or the significance of their role within a given 

environment. 
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For instance, a lion and a lungfish might have very different welfare capacities, but we could 

assign moral weight based on the complexity of their pain responses or cognitive functions 

(Browning, 2023). Similarly, an AI system that shows complex damage-avoidance behaviours 

might be assigned moral consideration proportional to its level of "awareness" or response 

complexity. 

 

Figure 3: Hypothetical awareness profiles for swarm robots, soft robots, and artificial neural networks (ANN’s). 
Each spine of the graph represents an axis corresponding to a dimension of awareness, where the values along 
these axes reflect relative measures of the system’s performance or abilities in that dimension. The values are 

dimensionless, representing the system’s capability on a relative scale rather than in specific units.  

3.  Collaborative awareness 

3.1 Defining collaborative awareness  

With the multidimensional framework of awareness established, we now turn to collaborative 

awareness. In D1.2, it was determined that existing concepts such as mutual awareness, 

collective awareness, and traditional notions of coordination and cooperation fall short in 

capturing collective behaviours and decision-making between artificial systems or between 

artificial systems and humans. To address this, we propose a tailored, conceptually 

engineered concept of collaborative awareness, consisting of three levels. 

Collaborative awareness: the time-bound adaptive pursuit of multi-agent goals, including 

through changes in the environment and group rates or compositions.   

Collaborative awareness, as defined here, serves as an umbrella term encompassing a wide 

range of collective behaviours and capacities. It spans from basic information exchanges to 

more complex forms of interaction, traditionally understood as collective or joint actions. A key 

aspect of this definition is the adaptive pursuit of shared or individual goals. This refers to the 

ability of systems or agents to dynamically adjust their behaviour in response to new 

information or changes in the environment, ensuring the successful achievement of a goal. In 

this context, a goal is an objective or desired outcome that drives the collaboration, which can 

be as straightforward as coordinating movements between robots to transport an object or as 

complex as solving a task through joint problem-solving between humans and AI. Such a goal 

can be, but crucially need not be, explicitly known to the agent. As long as its actions target a 

specific outcome adaptively, even if this aimed at outcome is predetermined and unchanging, 
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this suffices. The time-bound nature of collaboration, as approached in EMERGE, is crucial, 

as task completion is considered within a set or definitive time frame rather than open-ended. 

This aligns with the domain- or task-specific focus of the artificial systems at stake in this 

project. We are not targeting general systems that collaborate over long periods across a wide 

variety of tasks. Rather, we focus on systems designed for specific purposes, operating as 

efficiently and adaptively as possible within set parameters and objectives. 

0 Communication (co-existence of goals):  

Communication is understood minimally in terms of the capacities to share information 

between agents, which can range from simple broadcasting or signalling to more 

sophisticated forms of interaction. At its most basic, this could involve the transmission 

of raw data or alerts, allowing systems or agents to be aware of each other's presence 

and status. At higher levels, it may involve the exchange of complex messages, where 

meaning is interpreted and context is understood, enabling more nuanced interactions. 

For example, two robots may share sensory data to inform each other of environmental 

conditions, even if they are pursuing independent tasks. 

 

1 Coordination (interdependent goals): 

Coordination occurs when agents with distinct, yet interdependent, goals work together 

to ensure that their activities align for mutual benefit. Unlike communication, which 

merely involves information exchange, coordination requires agents to adjust their 

actions based on what others are doing, aiming to avoid conflicts or inefficiencies. This 

may include adapting timing, spatial positioning, or even sequences of tasks to ensure 

smooth interactions. For example, two drones performing different tasks in the same 

space may need to coordinate their flight paths to avoid collisions while accomplishing 

their respective objectives. 

 

2 Cooperation (common goals):  

Cooperation is the highest level of collaboration and occurs when agents share a 

common goal, leading to the alignment of their activities to achieve that shared 

objective. Here, the distinction between individual and group goals begins to blur, as 

the success of the group directly contributes to the success of each participant. 

Cooperation involves a more complex level of interaction, where agents may sacrifice 

individual benefits for the collective good. An example would be robots working 

together to assemble a product, where each action is dependent on the others, and 

the end goal (the completed product) is shared by all.  

3.2 How do the levels combine? 

In most scenarios, the levels of communication, coordination, and cooperation tend to form a 

hierarchical structure, where each builds upon the previous. Typically, communication serves 

as the foundation, enabling coordination by allowing agents to exchange information and 

adjust their actions accordingly. In turn, coordination lays the groundwork for cooperation, 

where agents align their activities toward a common goal. For instance, simple signalling at 

the communication level might be enough to facilitate basic coordination, even if more 

sophisticated forms of communication are absent. In this way, communication and 

coordination reinforce each other, providing the strategic framework for cooperation. 

While the levels of communication, coordination, and cooperation might initially seem 

hierarchical, they are not strictly sequential. There are likely to be non-standard cases where 

this hierarchy does not strictly apply. Cooperation can occur without prior explicit 

communication, particularly in time-constrained situations. One way this happens is through 
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pre-programmed or “instinctual strategies”. Similarly, coordination could be achieved through 

implicit mechanisms, such as shared environmental cues, rather than direct communication 

between agents. Another path to cooperation without communication is via established 

common ground or focal points (Schelling, 1960). For example, if a group of people, unfamiliar 

with each other, were told to meet in New York without the ability to communicate, studies 

have shown that many would converge on landmarks like Grand Central Station or Times 

Square around noon (Schelling, 1960; see also Mehta et al., 1994). These locations serve as 

salient focal points, guiding coordination without the need for explicit communication. Similarly, 

McMillan et al. (2012) examined how neural mechanisms support coordination in tasks without 

explicit communication. In a semantic task where participants are asked to name any boy's 

name, strategic decision-making leads them to consider what others are likely to choose, 

relying on social perspective-taking. This often results in common answers like 'John,' driven 

by probabilistic reasoning rather than direct communication (see also Bardsley et al., 2010; 

Isoni et al., 2013, 2019). While these cases are exceptions, they demonstrate that although 

the levels often interact and rely on each other, alternative pathways to coordination and 

cooperation may exist. 

Moreover, in the levels can also interact by being instances of one another. When agents 

engage in mutual communication, they are typically coordinating their actions to some 

extent, even if it's just to ensure that the information is exchanged effectively. This requires 

them to adjust their actions—such as when to signal, how to interpret the signals, and how to 

respond—in response to the communication of the other agent. In this sense, communication 

itself often involves basic coordination because it requires a shared understanding of the rules 

or protocols governing the exchange of information (e.g., taking turns, using shared symbols, 

or agreeing on the medium of communication). The agents must adjust their behaviour in 

relation to each other to maintain effective communication, which is a type of coordination. 

However, not all forms of communication involve extensive coordination of broader actions or 

goals. For example, two systems might exchange signals without aligning their goals or 

coordinating further behaviours. But in more sophisticated forms of communication, especially 

when it involves complex exchanges (like negotiations or dialogue), coordination is inherently 

built into the process. 

3.3 Dimensional model of collaborative awareness 

Taking all this into account how might we formulate a dimensional model of awareness that 

also captures these levels of collaborative awareness?  

The basic dimensional framework of awareness consists of five dimensions, each linked to 

various capacities that can be assessed through associated tasks and metrics. This framework 

aims to determine the degree to which an artificial system is aware along a given dimension. 

Metrics allow for the quantitative assessment of awareness for users’ purposes. This 

dimensional framework of awareness is captured in panel A in Figure 4 (below). Here we can 

distinguish between the directionality of the arrows. From a conceptual perspective, each 

dimension identifies the capacities of interest, which then inform the design of tasks and 

metrics. For end-users or developers assessing their systems, they will apply task-specific 

metrics to these tasks. By aggregating the performance across different tasks, they can 

assess the degree to which a system possesses certain capacities, which in turn when 

aggregated provides the degree to which that system is for instance, spatially aware. If this 

process is then repeated across all five (or potentially more) dimensions at stake, then a profile 

of awareness for this system is generated – such as presented in Figures 2 and 3 (above).  

This awareness framework is versatile and can be applied at both local and global levels. At 

the local level, it can be used to assess a single artificial agent, evaluating its capacities and 
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performance along the defined dimensions of awareness. For example, if we are examining a 

robot, we could measure its spatial awareness, temporal awareness, and other relevant 

dimensions using specific tasks and metrics. This process involves applying task-specific 

metrics to evaluate how well the robot performs in various tasks, such as navigating through 

an environment or coordinating movements. At the global level, the framework can be 

extended to assess entire swarms or groups of individual agents in much the same way.  

However, that merely allows for an assessment and generation of the basic awareness profile 

for either individual or collective agents. How might we approach specifically looking at the 

collaborative abilities, and the ensuing awareness requirements?  

Consider an individual agent within a distributed swarm. For this agent to effectively 

communicate, coordinate, or cooperate, it first needs to have information to share. If the agent 

possesses such information, such as spatial coordinates, this data must be in a format that is 

suitable for communication and intelligible to other agents. This entails that to communicate 

along the spatial dimension it needs a certain degree of spatial awareness. Collaborative 

awareness adds certain requirements or demand on to the awareness profile of an artificial 

system. When the agent needs to coordinate its actions with others or cooperate towards a 

common goal, the demands on its awareness increase. In this context, designing an artificial 

system with collaborative awareness necessitates specific requirements for capacities within 

the basic awareness profiles of the individual agents, or the collective as a whole. These 

requirements will vary depending on the domain, task, and the specific artificial system in use. 

This interplay between awareness profiles and collaborative capacities can be examined from 

two perspectives. First, a specific awareness profile can enable a system to communicate, 

coordinate, and cooperate. Conversely, designing a system with the capability for 

collaboration necessitates having a certain awareness profile. This relationship is illustrated 

in Panel B of Figure 4 (below). 

Instead of adopting a broad, domain-general perspective, we advocate for a domain-specific 

approach that focuses on the particular needs of the system. Deroy et al. (2024) highlight that 

domain-specific machines are more ethically manageable because they are easier to explain, 

control, and regulate. For effective collaboration among machines with different 

specializations or even different 'species' (i.e., brands or architectures), a concept of 

collaborative awareness is crucial. This framework should address varying demands for 

awareness within and across groups of collaborating systems. 

To account for this, we propose a building-block or additive approach. This means that 

awareness is composed of distinct components or abilities, where different systems may 

possess some elements without necessarily having others. While certain capacities can build 

on one another, they don’t need to form a strict hierarchy. For example, a system might have 

advanced spatial awareness whilst only having limited metacognitive or self-awareness 

related abilities.  

Such approaches offer several advantages and have been a significant topic in the 

consciousness and cognition literature (Spencer, 2024). This approach provides flexibility and 

customization by allowing researchers and developers to tailor assessments to specific needs, 

focusing on the capacities that are most relevant to their particular systems or applications. It 

supports a modular view of cognition, where complex phenomena are broken down into more 

manageable components, facilitating detailed analysis and incremental development. This 

approach aligns with the modularity of mind theories proposed in evolutionary psychology and 

cognitive science, which suggest that the mind is composed of specialized modules evolved 
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to handle specific tasks (Spencer, 2024; Sperber and Mercier, 2018). Additionally, the 

building-block approach enables targeted research and practical application by allowing 

focused investigations into specific aspects of awareness or cognition, which is particularly 

useful for applied research and system development. This methodology also supports 

comparative analysis between systems with different specializations or architectures, helping 

to identify strengths and weaknesses in a systematic way. 

To facilitate this, our framework supports a customizable approach where developers and end-

users can select the capacities that are relevant to their specific system. Instead of a one-size-

fits-all set of criteria for each dimension of awareness and level of collaboration, the base 

model provides a flexible structure that can be tailored. This allows users to define and 

operationalize the aspects of awareness that are pertinent to their systems, enabling targeted 

investigations and comparisons based on their specific needs and objectives. This 

personalized model ensures that the assessment of awareness aligns with the unique 

requirements of each application. Panel C in Figure 4 illustrates this by showing another 

potential add-on package of metrics (here ethics related ones), one could focus either the 

assessment or design of an artificial system on.  

 

 

Figure 4: Conceptual framework of awareness in artificial systems. Panel A provides a schematic of the basic 

awareness model entailing dimensions, associated capacities, tasks and metrics. The arrows indicate the 

directionality either the conceptual or assessment perspective. Panel B and C are the same but for collaborative 

awareness and ethical awareness respectively.  

4.  Emergence 

The dimensional framework of collaborative awareness presented in this report is grounded 

in the concept of emergence. But what does this entail? Specifically, how do collaborative 

behaviours emerge, and to what extent can properties like awareness be meaningfully applied 

at the group level? 
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Within the philosophical literature, the concept of emergence was first applied by Lewes (1877) 

in discussing the idea that in physical systems the whole is more than the sum of its parts 

(Clayton and Davies, 2006). In basic terms this means that at each level of complexity new 

qualities or properties emerge that cannot be attributed to the constituent parts. The example 

Davies gives is that water is justifiably described as wet, but it is meaningless to ask if the 

molecule H2O is wet (in Clayton and Davies, 2006).  

Usage of this term stands at a tension to the popularity of reduction and reductionist 

approaches in science and philosophy. Reductionism is the view that complex systems can 

be fully understood or explained by analysing their individual components and their 

interactions. In this view, the properties of a system are no more than the sum of its parts. For 

example, a car’s ability to move can be reduced to the functioning of the engine, wheels, and 

other mechanical components without needing to invoke any additional concepts beyond 

those parts. The tension between emergence and reductionism lies in whether certain 

properties, such as consciousness, can be fully explained by their individual parts (as 

reductionism suggests) or whether new properties arise at higher levels of complexity that 

can't be predicted from just studying the parts (as emergence proposes). 

Although this tension might seem insurmountable at a first glance, there are strong and weak 

version of both, each with their own advantages and disadvantages. For reductionism one can 

hold a methodological reductionist stance, where one approaches it as a useful method in 

science. Or one could take a position of ontological reductionism which holds a realist 

position regarding reduction.   

Weak emergence holds that while higher-level properties or behaviours arise from the 

interactions of lower-level components, these emergent properties can still, in principle, be 

explained by the underlying rules governing simpler parts. However, in practice, predicting 

these outcomes from the base components can be too complex or impossible without direct 

observation or simulation. For instance, we might know the rules governing neurons, but the 

way a full brain produces conscious thought isn’t something we can easily deduce just by 

studying individual neurons. Instead, we observe how consciousness emerges from these 

interactions as a higher-level phenomenon. Weak emergence suggests that these complex 

outcomes, while novel, are not separate or inexplicable in terms of their basic parts.  

Strong emergence instead holds that micro-level principles are inadequate to account for the 

behaviour of a system as a whole. This means that there are properties of a system that arise 

from micro-level components but cannot be deduced (even in principle) from the principles 

that govern these micro-level components. Strongly emergent properties then cannot be 

reduced back to the fundamental parts of the system, examples often mentioned here are life 

and culture. In this sense, they are often described as being 'more than the sum of their parts'. 

For example, culture is considered irreducible, if one argues, it cannot be fully understood by 

examining individual behaviours in isolation. The interactions between individuals create 

complex social dynamics—such as shared beliefs, norms, and practices—that arise at the 

collective level and cannot be predicted by merely aggregating individual actions. 

The positions of ontological reductionism and strong emergence are incompatible, but weak 

emergence can be combined with strong reductionism – and strong emergence with weak 

reductionism. A contentious debate rages on these positions. For the purposes of this report 

and EMERGE at large, it suffices to say that although a position of strong emergence could 

be argued for and defended, a commitment to weak emergence is already sufficient for our 

purposes. Weak emergence allows for the explanation of collaborative behaviours and 

awareness in artificial systems without requiring fundamentally new principles beyond the 

lower-level rules governing individual agents. We can ask and explore how awareness and 
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collaboration emerge from interactions between agents, and how new behaviours emerge at 

the group level, but we do not need to propose that these higher-level phenomena are 

irreducible to their basic components in principle. Instead, we recognize that while these 

higher-level behaviours could potentially be traced back to the underlying processes of 

individual systems, the complexity is such that, practically, we need direct observation, 

simulation, or empirical study at the macro-level to understand them fully. 

Such a position is desirable as it does not entirely rule out a position of strong reductionism. 

Essential elements to consider for the awareness framework as presented here are: non-

aggregativity and distinctive efficacy. These entail that emergent properties, such as those 

described in the previous section on collaborative awareness, manifest in novel behaviours 

that are (in principle) not possible without them. Moreover, emergent collaborative dimensions 

yield unique abilities that are not in principle reducible to the local dimensions, due to their 

complexity.  

5.  Shared information in collective systems 

 In the context of communication, coordination, and cooperation among artificial systems, the 

concept of "information" plays a foundational role. In section 3 of this report, communication 

was defined as a capacity for sharing information between agents. But what exactly is meant 

by "information" in this context? 

Although the use of an information-based approach to communication has been controversial 

in the study of animal signalling (see Seyfarth and Cheney, 2003), it is foundational in artificial 

intelligence (Floridi, 2011). In everyday language “information” is often used interchangeably 

with data, text, or any content transmitted through any medium. However, from a technical 

standpoint, information involves two key elements: it is extensive, and it reduces uncertainty 

(Adriaans, 2024). This means that information is additive, and if one were to have the complete 

information on a topic, their uncertainty would be reduced to zero.  

In artificial systems, to generate collaborative awareness, information sharing is crucial. 

Whether it takes the form of sensory inputs—collected through cameras or sensors—or more 

abstract symbolic representations like maps or action plans, the sharing and interpretation of 

information underpins interactions between agents. Importantly, information need not be 

transmitted directly. Changes in the environment, such as altered positioning or movement 

patterns, can also serve as indirect communication. These actions function as signals that, 

when observed, provide critical information to other agents. 

For example, consider a distributed robot swarm, with each agent possessing some sensory 

input with varying degrees of certainty. These robots can share their information in several 

ways: through direct communication channels like signals (e.g. flashing lights), or through 

indirect means such as leaving pheromone-like trails or modifying their movements. A robot 

encountering an error might signal its status by moving to the periphery of the swarm, 

providing valuable information to others in the group. What matters is not only that the 

information is transmitted, but that it is received, interpreted, and acted upon, leading to a 

change in the behaviour of the recipient. 

This brings us to an essential aspect of collaborative awareness in artificial systems: uptake 

and causality. For communication to take place and be observable from an external 

perspective, it must alter the behaviour of the receiving agent in a meaningful way. If the 

information has no causal effect, it cannot be considered to have been successfully 

communicated. It must lead to some updating-process on the part of the receiver.  



 
WP1 Conceptual framework 

D1.3 Dimensions of collaborative awareness 
 
 

 

  
 

Funded by the European Union under Grant Agreement 101070918. Views and opinions expressed are however those of the 

author(s) only and do not necessarily reflect those of the European Union or European Innovation Council and SMEs Executive 

Agency (EISMEA). Neither the European Union nor the granting authority can be held responsible for them. 
   23  

 

In artificial systems, information functions as more than just the medium of interaction—it is 

the foundation for emergent collective behaviour. The type, structure, and flow of information 

between agents directly shape the system's ability to communicate, coordinate, and 

cooperate. Systems that can process and transmit information in ways that enable mutual 

understanding, and the formation of collective goals exhibit advanced forms of collaborative 

awareness. This involves more than simply transmitting raw data; it requires building shared 

models of the environment and aligning individual goals to collective action. In this sense, 

information becomes the mechanism through which distributed agents become aware of each 

other’s intentions, plans, and needs, enabling collaborative awareness that surpasses the 

action-perception abilities of any single agent.  

In the context of AI, this information-driven approach offers the possibility of true collective 

intelligence, where the whole system's capabilities exceed the sum of its parts. The challenge 

lies in designing systems that not only exchange data, but do so in ways that foster 

communication, coordination, and cooperation at a sophisticated level. 

6.  Measuring collaborative awareness: a theoretical 

toolkit  

To establish effective methods for assessing the degrees of collaborative awareness in 

collectives of artificial systems, we need to understand the target phenomena. This entails 

formulating descriptions of what communication, coordination or collaboration look like in 

diverse systems, developing criteria for recognising (or designing) these abilities and possible 

experimental paradigms that might be relied upon. To make a start at this we explore 

established measures and concepts from ethology, evolutionary game theory, neuroscience, 

and social psychology. 

6.1 Ethology and sociobiology 

Drawing on the literature on collaborative behaviours in nonhuman animals (hereafter 

animals), we rely on insights from ethology, comparative psychology, and sociobiology. While 

a comprehensive overview of this body of research is beyond the scope of this report, we will 

discuss some key measures, descriptions, and criteria relevant to the target phenomena. 

Starting with communication, Wilson (2000) defines biological communication as “the action 

on the part of one organism (or cell) that alters the probability pattern of behaviour in another 

organism (or cell) in a fashion adaptive to either one or both of the participants (p. 176).” In 

this sense, communication involves both a signal and a response, where the key indicator is 

a change in behaviour resulting from the communicative act—what can be described as 

'uptake.' This emphasis is primarily practical. For humans, it’s easy to imagine receiving new 

information and storing it without altering behaviour. In such cases, we can verify 

understanding through verbal report. However, with animals that lack this capacity for verbal 

feedback, we must rely on observable behavioural changes to confirm uptake. 

Wilson also points out that not all actions that influence another's behaviour qualify as 

communication. For example, an attack will most certainly change an animal’s behaviour but 

is hardly communicative. Additionally, for an action to count as communication, it must be 

sufficiently consequential. One animal pausing to watch another walk by, for instance, doesn’t 

constitute communication. Such concerns could also by addressed by emphasising that the 

behaviour of the caller is goal-directed, however this comes with its challenges. 
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Seyfarth and Cheney (2003) give the example of a male frog giving an advertising call to 

attract females who respond by producing one of two sounds, meanwhile also attracting a 

predating bat. The frog evolved with the goal of communicating its size and condition to both 

rivals and mates, whilst giving as little as possible information to the bats. This example 

indicates the limits of insisting on goal-directedness, under no reading is the frog ‘intentionally’ 

communicating with the bat, it goes counter to its goals to do so. Yet, it is communicating with 

the bat, as an unintended consequence of its communication with mates. Such evolutionary 

trade-offs highlight two points according to Seyfarth and Cheney. Namely, that communication 

is a social event, designed to impact listeners, and that the function of a signal can be 

asymmetric between listener and signaller.  

Overall, there is no clear consensus on what constitutes communication in animals. 

Historically, the debate has centred on two major approaches: information transmission versus 

causal influence (Kalkman, 2019). Kalkman discusses a hybrid approach, which emphasizes 

causal influence mediated via information transmission, though it risks being too inclusive by 

counting co-adapted interactions as communication. 

At the minimal end of the communication spectrum, we can differentiate between broadcasting 

and signalling. Broadcasting involves sending information to a broader, non-targeted 

audience, whereas signalling is directed at specific recipients or groups. For example, mating 

calls by male frogs or predator alert calls by vervet monkeys (Seyfarth et al., 1980) are meant 

for a particular audience and thus fall under signalling. In contrast, the honeybee's waggle 

dance (von Frisch, 1954) is an example of broadcasting. Performed by foraging bees, the 

dance conveys information about the direction and distance of a food source to any observer. 

As Wilson (2000) notes, this form of communication is genetically fixed, with a one-to-one 

correspondence between the dance and its meaning, and it assumes an appropriate audience 

is present. Unlike the rigid rules of the waggle dance, vervet monkeys' alarm calls are more 

context-sensitive and adaptable to the environment (Deshpande et al., 2023).  

In contrast to the indiscriminate broadcast alarm calls found in many monkeys and lesser 

apes, great apes exhibit more complex forms of communication, including vocalizations that 

appear to be used in goal-directed, intentional ways. Studies by Crockford et al. (2012) and 

Schel et al. (2013) have shown that apes, such as chimpanzees, use vocalizations not simply 

as alarm calls but with the intent to influence the behaviour of specific individuals. This 

behaviour aligns with broader evidence of intentionality in ape communication. Byrne et al. 

(2017) note that apes regularly engage in audience-targeting behaviours, waiting for 

responses and persisting or elaborating their signals when the intended recipients fail to react. 

Such examples of purposeful signalling suggest that apes can adjust their communication 

based on social contexts, making their vocalizations more sophisticated.  

As discussed in D1.2, the existing literature on coordination and cooperation in animals 

suffers from a lack of clear or agreed-upon terminology, with terms like "cooperation" and "joint 

action" often used interchangeably. This terminological ambiguity reflects a deeper issue in 

understanding the complexity of these behaviours. Coordination, where individuals align their 

actions to achieve separate goals, is well-documented across species, but true cooperation—

where agents share a joint goal and act toward its fulfilment—is only present in a minimal 

sense (if at all).   

Depending on one’s definition of cooperation, there are high levels of cooperation in some 

insect societies, specifically in eusocial insects. This can be explained through the indirect 

fitness benefits for each member of the colony due to their high relatedness with one another 

(Hamilton, 1964). The ‘goals’ of each member of such a colony are entirely unified with that of 
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the group, moreover there is evolutionary pressure to prioritise the wellbeing of the group over 

that of any individual. Cooperation in this sense, between unrelated individuals is rare among 

nonhuman animals, and highly debated (Clutton-Brock, 2009). 

 

However, in most animals, awareness is fundamentally individualistic. Even in instances of 

sophisticated communication and coordination, such as those observed in great apes, the 

awareness guiding behaviour remains tied to individual intentions and perceptions. Great 

apes, for example, are highly flexible in their collaborative behaviours, monitoring where 

conspecifics’ attention is fixed, and drawing this attention to themselves in various ways 

(Tomasello, 2022). However, as Tomasello notes, they lack joint attention and cannot form 

mutually obligating joint goals or commitments. While they can coordinate their actions, such 

as in tasks that require timing or synchronised efforts (Visco-Comandini et al., 2015; Voinov 

et al., 2020), they do so without the kind of shared intentionality that underlies human 

cooperation (Call, 2009). 

 

This limitation is key when distinguishing between coordination and cooperation. In 

coordination, each individual has its own goal, and their alignment of actions is largely 

pragmatic, often driven by individual gain rather than collective purpose. However, this does 

not mean the individual goal cannot by circumstance (or through evolution) overlap with the 

collective goal - it just means it is currently not shaped by it. Cooperation, however, involves 

agents committing to a shared goal, with their actions driven by a collective understanding of 

what they are jointly trying to achieve. This requires the presence of collaborative interactions 

where participants share psychological states with another - What Tomasello and Carpenter 

(2007) refer to as ‘shared intentionality’.  

The transition from coordination to cooperation may rely on cognitive mechanisms like 

recursive intentions—where an individual not only recognizes the goal of another but also 

understands that the other recognizes their own goal. However, this level of recursive thinking 

appears to be largely absent in animals. 

In artificial systems, however, the potential for true cooperation takes on a different form. 

Unlike biological systems, AI can be designed with the capacity to "share" a model for 

collective action. This introduces a fundamentally different framework, where agents are not 

just aligned in their actions, but actively share a model of the world, task, or goal, making 

cooperative behaviour not only possible, but different from humans.  

 
Table 1: overview of existing measures of collaborative awareness in animals 

Measures of collaboration in Animals  

Communication  Signal diversity The variety of communication signals used by a 
species, including vocal, visual, chemical, and tactile 
cues 

Signal complexity The intricacy of individual signals, such as the structure 
of vocalisations or the elaborateness of visual displays.  

Contextual flexibility The ability to use different signals in various contexts or 
modify signals based on the social environment.   

Individual 
distinctiveness 

The presence of individually distinct signals, such as the 
signature whistles in bottlenose dolphins.  

Information content The amount and type of information conveyed through 
signals, such as identity, emotional state, or intentions.  

Signal honesty The reliability of signals in conveying accurate 
information about the sender’s quality or state.  
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Coordination  Synchronisation  The ability of individuals to align their behaviours or 
movements in time and space.  

Role recognition  The capacity to understand and respond to a partner’s 
role in a cooperative task. 

Temporal 
coordination 

The timing and sequencing of actions between 
individuals during collaborative efforts.  

Spatial coordination  The ability to maintain appropriate positioning relative to 
others during group activities.  

Task division The allocation of different roles or subtasks among 
individuals in a coordinated effort.  

Behavioural 
matching 

The degree to which individuals mirror or complement 
each other’s actions.  

Cooperation  Succes rate The frequency with which individuals successfully 
complete cooperative tasks.  

Efficiency  The speed or resource utilisation in achieving 
cooperative goals.  

Reciprocity  The extent to which cooperative behaviours are 
reciprocated among individuals. 

Coalition formation The ability to form alliances or partnerships for mutual 
benefit.  

Resource sharing The willingness to share food, information, or other 
resources with conspecifics.  

Altruistic behaviours Actions that benefit others at a cost to the individual 
performing them.  

Conflict resolution The ability to resolve disputes and maintain cooperative 
relationships.  

6.2 Evolutionary game theory 

In this section, we turn to evolutionary game theory as a framework for understanding 

communication, coordination, and cooperation in artificial systems. Evolutionary game theory 

provides a model for how strategies and behaviours can evolve over time through interaction, 

competition, and adaptation, offering insights into the emergence of collective behaviours in 

both biological and artificial systems. 

In game theory, a game refers to an interaction between two or more agents (players), where 

the outcome for each participant is determined not only by their own choices but also by the 

strategies chosen by the other players (Maynard Smith, 1982). These players can be any type 

of interactive decision-making agent, animals, plants, microorganisms, and particularly as of 

late also robots and simulated artificial agents (Hummert et al., 2014). A specific focus in early 

developments of evolutionary game theory has been on conflicts among animals within and 

across species, such as combat between two males of the same species for a mate or 

resources (Maynard Smith and Price, 1973).  

A key point of contention is whether or not communication is by necessity at the benefit of 

both the actor and reactor and how such behaviours could evolve for both interspecies and 

intraspecies scenarios. In evolutionary terms, signalling must offer some adaptive benefit to 

both parties to be stable (Skyrms, 2010).  

The challenge for coordination lies in avoiding misaligned strategies that lead to suboptimal 

outcomes for the group. This is particularly relevant in coordination games where individuals 

must choose actions that depend on predicting the choices of others, such as in mate selection 

or foraging behaviour (Skyrms, 2004). The Nash equilibrium selection problem (another name 

for the coordination problem in game theory)  has led to the development of a menagerie of 

theories to explain how interactive agents manage to solve it in various domains: focal points 

among outcomes (Schelling, 1960), refined strategies of players (Harsanyi and Selten, 1988), 
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social norms (Binmore, 2005; Bicchieri, 2006), team reasoning (Sugden, 1993; Bacharach, 

2006; Karpus and Radzvilas, 2021), and others.  

Regarding cooperative behaviours, Axelrod and Hamilton (1981) point out how most of 

adaptation in biological evolution may have been assigned to selection at the level of 

populations, or entire species of organisms If that is true, cooperation among individual 

members of a population is quite likely too. However, if we focus on adaptation at the level of 

an individual interesting questions emerge in accounting for cooperative and altruistic 

behaviours on both intraspecies as well as interspecies levels. Within a single species, 

cooperation and altruism are both adaptive if there is a sufficiently close relation between 

players – kinship (Hamilton, 1964; Maynard Smith, 1964). However, cooperative and altruistic 

actions also take place when there are no kinship relations, such as in instances of mutualistic 

symbioses and in a large variety of interactions among humans (e.g. Camerer, 2003; Falk et 

al., 2003). The emergence of cooperation has also been observed in artificial systems like 

robotics, where experiments show that group-level selection and high relatedness between 

robots can promote cooperation, as seen in the evolution of communication in robotic foraging 

tasks (Hauert et al., 2014). 

From the point of view of orthodox evolutionary game theory, cooperative and altruistic 

behaviours can emerge only when there is either a direct or indirect fitness increase to the 

individual interacting parties (Melis and Semmann, 2010), though alternative views have been 

proposed in game theory more widely as of late (e.g. Sugden, 1993; Bacharach, 2006; 

Radzvilas and Karpus, 2021). Cooperation, a game-theoretic understanding of it, often 

involves making some form of investment: engaging in behaviour that reduces the immediate 

payoff of the actor while increasing that of another party, but if enacted reciprocally is mutually 

beneficial to all reciprocally cooperating parties involved. As Bshary and Raihani (2017) point 

out, such behaviour is particularly vulnerable to cheaters and, hence high relatedness (kin or 

other) between individuals can safeguard one from this.  

Table 2: overview of existing measures of collaborative awareness from game theory. 

Table 2: Measures of collaborative awareness from game theory 

Communication Emergence of 

signalling 

techniques  

Spontaneous emergence of signalling techniques between 
interacting parties despite the possibility of mis-coordinated 
interaction of those signals between senders and receivers 
in light of possible deceit.  

Coordination Convergence on 
equilibria 

Convergence of the interacting agents’ actions on equilibria 
in the face of Nash equilibrium selection problems in 
repeated interactions.  

Cooperation  Attainment of 
mutually 
beneficial 
outcomes 

Achieving outcomes that are good for all parties involved 
as a group, but not necessarily for each individual party in 
isolation – in one-shot or repeated interactions in mixed-
motive games, such as the Prisoner’s Dilemma, Chicken, 
and Trust (e.g. the emergence of tit-for-tat reciprocation of 
cooperative and non-cooperative actions in the latter case). 

6.3 Neuroscience  

From a neuroscience perspective, communication, coordination, and cooperation are 

interrelated processes that involve complex neural mechanisms. Communication relies 

heavily on language-related brain regions like Broca's and Wernicke's areas, as well as the 

superior temporal gyrus for speech processing.  Coordination engages areas such as the 

prefrontal cortex and temporoparietal junction, which are crucial for synchronizing actions and 

understanding others' intentions. Cooperation activates reward centres like the ventral 

striatum and regions associated with social cognition, including the medial prefrontal cortex. 



 
WP1 Conceptual framework 

D1.3 Dimensions of collaborative awareness 
 
 

 

  
 

Funded by the European Union under Grant Agreement 101070918. Views and opinions expressed are however those of the 

author(s) only and do not necessarily reflect those of the European Union or European Innovation Council and SMEs Executive 

Agency (EISMEA). Neither the European Union nor the granting authority can be held responsible for them. 
   28  

 

One of the most investigated collaborative skills - theory of mind - comes from the ability to 

attribute mental states, beliefs, intentions, and desires to oneself and others. Neuroimaging 

studies have consistently implicated several key brain regions in ToM tasks, including the 

medial prefrontal cortex (mPFC), temporoparietal junction (TPJ), superior temporal sulcus 

(STS), and precuneus. The mPFC is thought to be involved in reasoning about mental states, 

while the TPJ plays a role in distinguishing between self and other perspectives. The STS is 

associated with processing social cues and biological motion. 

Joint action, which involves coordinating one's actions with others to achieve a shared goal, 

relies on many of the same neural substrates as ToM but also engages additional regions. 

Studies on the neural correlates of joint action have highlighted the importance of the mirror 

neuron system, including the inferior frontal gyrus and inferior parietal lobule. These regions 

are activated both when performing an action and when observing others perform similar 

actions, facilitating action understanding and imitation. 

Additionally, joint action tasks often show increased activation in areas associated with 

executive function and cognitive control, such as the dorsolateral prefrontal cortex and anterior 

cingulate cortex. These regions likely support the coordination and monitoring of shared task 

goals. 

Table 3: overview of existing measures of collaborative awareness from neuroscience. 

Measures of collaborative awareness from neuroscience 

Communication Interbrain 
synchronisation 

Measuring neural coupling between individuals, especially 
in prefrontal and temporoparietal regions, during 
communicative tasks using techniques like fNIRS 
hyperscanning. 

Coordination Motor 
synchronisation 

Assessing the timing and precision of coordinated 
movements between individuals, often measured through 
motion capture or EMG.  

Predictive motor 
processes  

Measuring anticipatory adjustments in motor planning 
areas like the premotor cortex and cerebellum during joint 
tasks.  

Shared 
representation 
formation 

Assessing activity in regions associated with action 
understanding and planning during coordinated tasks.  

Cooperation  Reward system 
activation 

Measuring activity in the ventral striatum and orbitofrontal 
cortex during cooperative versus competitive tasks. 

Trust-related 
neural responses 

Assessing activity in regions like the anterior cingulate 
cortex and insula during trust-based cooperative 
interactions. 

Theory of mind 
engagement 

Evaluating activity in the medial prefrontal cortex and 
temporoparietal junction during perspective-taking in 
cooperative contexts.  

Prosocial 
decision-making  

Measuring activity in regions like the temporoparietal 
junction during choices that benefit others or the group.  

6.4 Social psychology   

While the definitions of communication, coordination and cooperation applied in social 

psychology are consistent with those applied to animals, and in neuroscience, a key dimension 

added by social psychology has to do with social norms.   

Social norms are unwritten rules and shared expectations that dictate appropriate conduct in 

specific social contexts. They serve as informal guidelines that help maintain order, facilitate 

social interactions, and promote cooperation among group members. Norms can vary widely 

across cultures and subgroups, influencing everything from daily etiquette to more significant 
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social behaviours. By providing informal yet powerful guidelines, social norms help to maintain 

order and predictability in interactions, thereby reducing the cognitive load on individuals by 

offering a clear structure of acceptable behaviours. 

Bicchieri’s (2017) theory of social norms offers a valuable framework for understanding how 

these norms emerge, how they guide behavior, and how they influence social dynamics. 

According to Bicchieri, social norms are not merely internalized beliefs but conditional 

preferences that depend on individuals’ expectations about the behavior of others. She 

differentiates between two types of expectations:  

• empirical expectations, which refer to what individuals believe others will do,  

• normative expectations, which refer to what individuals believe others think they ought to 

do.  

For a social norm to be followed, individuals need both types of expectations to align: they 

must expect that others will behave according to the norm and that others expect them to do 

the same. A key element of her framework is the idea that people comply with norms when 

they believe that most others are also complying (empirical expectation), and when they 

believe they are being observed or judged by others (normative expectation). This creates a 

feedback loop where individuals’ behavior reinforces the collective adherence to the norm, 

fostering coordination and cooperation. 

 

Bicchieri’s theory of social norms can offer a useful framework for understanding how 

descriptive norms of communication, coordination or cooperation emerge within collectives, 

including teams of AI or human-AI interactions. Descriptive norms can arise from individuals' 

observations of how others behave in specific situations, leading them to conform if they 

believe the behavior is widespread. In AI collectives or mixed human-AI teams, agents—

whether human or artificial—may adjust their behavior based on what they perceive as 

common or acceptable practices. Descriptive norms might thus emerge from patterns of 

interaction that are repeated and become predictable, which leads to stable behavioral 

expectations. 

For example, if a group of AI agents work together to optimize traffic flow in a smart city, over 

time, these AI agents may establish a pattern where they coordinate to reduce congestion by 

adjusting traffic signals in a synchronized manner. Each agent observes the others 

consistently contributing to this coordinated effort, which leads to smoother traffic flow. This 

coordinated behavior gradually becomes a descriptive norm among the AI agents: they 

"expect" that all agents will continue to coordinate in optimizing traffic, guiding their future 

interactions in similar scenarios. 

Similarly, in a human-AI team setting, human operators and AI systems may work together to 

allocate medical resources in a hospital. Over time, a norm might emerge where human 

doctors consistently follow the AI’s recommendations for resource allocation because the AI 

has shown high accuracy in predicting patient needs. This behavior is reinforced because the 

doctors observe that their colleagues also tend to trust the AI’s decisions, and outcomes are 

generally positive. Over repeated interactions, the reliance on the AI’s suggestions becomes 

a descriptive norm in the team. 

In both cases, these norms—whether among AI agents or in mixed human-AI teams—create 

stable expectations about how decisions will be made. The AI agents in the traffic example 

expect their peers to continue coordinating their actions, and the doctors in the hospital 

example expect their colleagues to defer to the AI.  

Such norms help streamline interactions but can also become resistant to change, even if 

circumstances shift, such as if the AI in the hospital begins making less accurate 
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recommendations. As Bicchieri argues, shifts in social norms are often slow because they 

require a collective change in both what individuals believe others are doing (empirical 

expectations) and what they believe others think they should do (normative expectations). 

This is especially relevant in human-AI teams, where changing these expectations may 

necessitate reconfiguring how both humans and AI systems understand and respond to each 

other’s roles and behaviors in the collective. 

Table 4: overview of existing measures of collaborative awareness from social psychology. 

Methods for assessing collaborative awareness from social psychology 
 
Social psychologists use a combination of self-report measures, behavioral observations, and 

experimental paradigms to assess communication, coordination or cooperation, and the specific 

measures vary with the aspect being studied.  

Measures of group dynamics and team processes can assess coordination through role clarity 

scales, task interdependence measures or team mental model similarity indices.  

Social norms are usually assessed through verbal reports of empirical expectations (perceptions of 

how others typically behave) and injunctive expectations (perceptions of what behaviors others 

approve/disapprove of), while social norm adherence scales measure conformity to perceived norms.  

7.  Collaborative spatial awareness for robot swarms 

How could one go about implementing collaborative spatial awareness in a swarm of robots? 

Moreover, what might be the concrete difference between a robot swarm capable of 

communication, coordination or cooperation along this single dimension?  

A single agent within a distributed swarm could be given spatial awareness locally. This agent 

would then be aware of its own location with respect to either its environment or other moving 

objects within it (i.e. the rest of the swarm). This need not yet entail recognising the other 

moving agents as members of its own ‘group’ - but it very well could. If this is the case for all 

agents within the swarm on a local level, then the swam could eventually develop a shared 

reference frame. At the level of mere reactions to local agents (i.e. reacting to proximity), no 

shared reference frame is created. Only when there is more sophisticated exchange of 

information and model, such as through Gaussian Belief Propagation, a true cooperative 

shared reference frame can emerge (Jones and Hauert, 2024).  

Robots can measure the relative location of other robots within their local sensing range and 

can also measure their own movement (odometry). These measurements constitute 

observations that are used to construct a local factor graph (Dellaert and Kaess, 2017) 

constraining possible robot positions. Robots within local sensing range also exchange 

messages that implement Gaussian Belief Propagation on the factor graphs, tying them 

together into a distributed graph that converges on the most consistent reconciliation of all the 

recent measurements made collectively across the swarm, summarised as the shared 

Distributed Reference Frame; each robot knows where it is relative to the swarm as a whole. 

Within an intralogistics scenario a robot swarm might have to locate boxes within a bounded 

area and deliver these to a designated drop-off zone. Some boxes might require more than 

one agent to lift, whereas others could be delivered by a single agent. Success in performing 

this task could be measured in terms of overall speed to deliver all the boxes within the arena. 

The spatial awareness each individual agent has can be of different degrees, some might 

know the exact coordinates of a box, whereas others know only the quadrant of the arena in 

which a box is located. Moreover, we can imagine a swarm that immediately recognise which 
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boxes need others to lift, and which can be done individually, but one could also imagine a 

swarm that would need to acquire and communicate this information also. If we are 

considering a swarm with heterogenous agents, such targeted communication might be 

essential to improve efficiency.  

It is in such a scenario that genuine communication, beyond mere broadcasting becomes 

essential. If only certain members of the swarm can assist in the task at hand, then locating 

them and communicating specifically to those agents becomes especially pertinent. The 

firefighting case as detailed in the introduction illustrate the need for this. If we have a swarm 

consisting of domain-specific specialised agents a shared reference frame could be the 

stepping of point to enable more targeted communication as well as localisation.  

If we imagine a scenario where two specialised heterogenous swarms are to collaborate in a 

shared space. Say drones spotting and putting out fires from the air, and robots on the ground 

creating firebreaks and reinforcing firefighters. Both swarms have their own reference frame 

relative to their own location, however it would be beneficial (if not crucial) for the two swarm 

to collaborate efficiently if they could share this.  

Here we can distinguish between an egocentric and allocentric spatial reference frame 

(Klatzky, 1998). An egocentric perspective is one that is self-centred. Objects and their 

locations are represented relative to the observer’s own position or viewpoint. For example, 

“the bookshelf is to my left” is an example of egocentric location information. An allocentric 

perspective is one that is world-centred, it refers to an external perspective. This means that 

in an allocentric reference frame points are located within a framework external to the observer 

and their position (Klatzky, 1998). It is a ‘map-like’ view of the environment, navigating using 

landmarks or other recognisable features such as the north pole. To extend the previous 

example, “the bookshelf is on my west” is an allocentric location information.  

Within a single swarm each agent has an egocentric perspective which using Gaussian Belief 

Propagation, if all goes well, is consistent across all members of the swarm. However, for each 

they still view it from where they are within said swarm. On the level of a single swarm this is 

sufficient. However, if the swarm needs to collaborate with another swarm of a different 

‘species’ (i.e. brand), or communication and work with human beings – then such an 

egocentric perspective might cease to be enough.  

At this point, several intriguing questions arise regarding the nature of swarms. If two distinct 

swarms meet and converge on a shared reference frame, do they lose their distinct identities 

as separate entities? How we approach this question influences our understanding of the 

shared map —whether it embodies merely a sophisticated egocentric, a quasi-allocentric, or 

a clear case of an allocentric perspective.  

This question invites future exploration of an equilibrium in the context of swarm dynamics. 

The balance between maintaining distinct identities and achieving functional integration reflect 

an ongoing negotiation, which can be more or less successful depending on the various 

architectures of the swarms involved, between individuality and cooperation. The granularity 

at which the scenario is analysed shapes our interpretation of the outcome.  

Two swarms both working within the same map, could engage in continuously updating that 

map. In the firefighting scenario that could mean both updating the map of the environment 

from the air and the ground, but also monitoring the spread of the fire in a manner that is 

sharable between both swarms and involved human beings. In this case coordination could 

easily take place. If the drones are putting out the fire from the air by dropping water on it, the 

robots on the grounds might be creating a line and keeping the fire from spreading to especially 

flammable or sensitive areas. They have distinct tasks potentially even on different sides of 
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the forest, but to maximise efficiency need to coordinate in their updating of the map, as well 

as stay out of each other's way. However, if they are both working in the exact same area of 

the forest then cooperation is key, where their activities need to be aligned in their shared 

goal of putting out the fire.  

How might this be achieved between two swarms? One approach would be, for example, 

distributed SLAM (e.g Lajoie et al. 2020). But this would seem to lose the separateness 

between the swarms and introduce a large amount of redundant and unnecessary information 

exchange and computation. Consider the scenario above, each swarm cares about different 

environmental information and builds a different ‘map’, the ground robots need to know about 

obstacles, sensitive areas, and potential firebreak locations, the drones need to know more 

about long range fire sensing, locations of charging stations and atmospheric conditions. But 

they do both care about some features in the global map – the location of fires. At the minimum 

then, each swarm must be able to agree on the transformation between their respective 

reference frames in order to share just the salient parts of each map. 

One could argue that as long as both swarms’ egocentric maps converge in the right places 

(e.g. fire locations), they may function within an emergent quasi-allocentric perspective. Each 

swarm maintains an egocentric view, but the convergence of these views for shared purposes 

introduces a level of abstraction that borders on allocentric – whilst maintaining the separation 

between the two swarms.  

For the two physically separate swarms in the scenario highlighted above to agree between 

themselves about their respective transformation, they cannot rely on the intra-agent short 

range communication. One approach is to provide at least some members of each swarm with 

the ability to perform mutual long range inter-swarm measurement and communication. This 

could be used to support the minimal level of GBP processing to derive the transformation 

between the two reference frames.   

In a more descriptive sense, each swarm is cohesive, with relatively large amounts of shorter-

range intra-swarm observation and communication. Inter-swarm communication is far sparser 

but over longer distances, just sufficient to support the requirements for sharing of salient map 

features. Because of the sparser requirements, only a fraction of each entire swarm would 

need the more expensive long-range sensing and communication hardware. 

Clearly, all agents within each swarm are communicating, in order to implement GBP and 

the swarm goals. Additionally, inter-swarm communication through the sparse agents is 

necessary to enable coordination with respect to the salient global information of fire 

locations. We don’t talk here about cooperation on e.g. planning over the shared goal of 

fighting the fire, which would perhaps operate at a higher level of abstraction, but both the 

communication and coordination detailed above are necessary preconditions. 

Conclusion 

Collaborative awareness, as explored in this report, is essential for creating AI systems that 

can work safely and effectively with humans in shared environments. By focusing on the 

unique capabilities that emerge at the group level, this framework provides a conceptual 

basis for collaboration in AI collectives. We examined methods for delineating 

communication, coordination, and cooperation, drawing from ethology, game theory, 

neuroscience, social psychology, and swarm robotics. 

Our dimensional model of collaborative awareness offers a clear approach to designing 

systems that adapt and work together in complex environments, ensuring ethical and reliable 
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interactions. It emphasises the need for effective and meaningful assessments of artificial 

systems, evaluating their awareness profiles and their success in collaborating with diverse 

agents. This aims to enable the implementation of awareness in heterogeneous collectives 

of artificial systems in an ethically tractable manner, suitable for deployment in shared 

spaces with human beings. 

  



 
WP1 Conceptual framework 

D1.3 Dimensions of collaborative awareness 
 
 

 

  
 

Funded by the European Union under Grant Agreement 101070918. Views and opinions expressed are however those of the 

author(s) only and do not necessarily reflect those of the European Union or European Innovation Council and SMEs Executive 

Agency (EISMEA). Neither the European Union nor the granting authority can be held responsible for them. 
   34  

 

References 

Adriaans, P. (2024). Information. In: Zalta, E.N., Nodelman, U. (eds.). The Stanford 

Encyclopedia of Philosophy (Summer 2024 Edition). 

https://plato.stanford.edu/archives/sum2024/entries/information/ 

Ardón, P., Pairet, È., Lohan, K. S., Ramamoorthy, S., & Petrick, R. P. A. (2020). Affordances 

in Robotic Tasks—A Survey (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2004.07400  

Axelrod, R., & Hamilton, W. D. (1981). The Evolution of Cooperation. Science, 211(4489), 

1390–1396. https://doi.org/10.1126/science.7466396  

Babb, S. J., & Crystal, J. D. (2006). Episodic-like Memory in the Rat. Current Biology, 

16(13), 1317–1321. https://doi.org/10.1016/j.cub.2006.05.025  

Bardsley, N., Mehta, J., Starmer, C., and Sugden, R. (2010). Explaining focal points: 

Cognitive hierarchy theory versus team reasoning. The Economic Journal 120, 40–79.  

Bacharach, M. (2006). Beyond individual choice: teams and frames in game theory. 

Princeton University Press.  

Bayne, T. (2011). Agentive Experiences as Pushmi-Pullyu Representations. In: Aguilar, J.H., 

Buckareff, A.A., Frankish, K. (eds) New Waves in Philosophy of Action. New Waves in 

Philosophy. Palgrave Macmillan, London. https://doi.org/10.1057/9780230304253_11  

Bayne, T., Hohwy, J., & Owen, A. M. (2016). Are There Levels of Consciousness? Trends in 

Cognitive Sciences, 20(6), 405–413. https://doi.org/10.1016/j.tics.2016.03.009 

Bayne, T., & Pacherie, E. (2007). Narrators and comparators: The architecture of agentive 

self-awareness. Synthese, 159(3), 475–491. https://doi.org/10.1007/s11229-007-9239-9  

Bshary, R., & Raihani, N. J. (2017). Helping in humans and other animals: A fruitful 

interdisciplinary dialogue. Proceedings of the Royal Society B: Biological Sciences, 

284(1863), 20170929. https://doi.org/10.1098/rspb.2017.0929  

Bicchieri, C. (2006). The grammar of society. Cambridge University Press.  

Bicchieri, C. (2017). Norms in the Wild: How to Diagnose, Measure, and Change Social 

Norms. Oxford University Press. 

https://doi.org/10.1093/acprof:oso/9780190622046.001.0001  

Binmore, K. (2005). Natural justice. Oxford University Press.  

Birch, J., Schnell, A. K., & Clayton, N. S. (2020). Dimensions of Animal Consciousness. 

Trends in Cognitive Sciences, 24(10), 789–801. https://doi.org/10.1016/j.tics.2020.07.007 

Birk, A., & Carpin, S. (2006). Merging occupancy grid maps from multiple robots. 

Proceedings of the IEEE: Special Issue on Multi-Robot Systems, 94(7), 1384–1387. 

Bones, H., Ford, S., Hendery, R., Richards, K., & Swist, T. (2021). In the Frame: The 

Language of AI. Philosophy & Technology, 34(S1), 23–44. https://doi.org/10.1007/s13347-

020-00422-7 

Browning, H. (2023). Welfare comparisons within and across species. Philosophical Studies, 

180(2), 529-551.  



 
WP1 Conceptual framework 

D1.3 Dimensions of collaborative awareness 
 
 

 

  
 

Funded by the European Union under Grant Agreement 101070918. Views and opinions expressed are however those of the 

author(s) only and do not necessarily reflect those of the European Union or European Innovation Council and SMEs Executive 

Agency (EISMEA). Neither the European Union nor the granting authority can be held responsible for them. 
   35  

 

Buckner, C. (2014). The Semantic Problem(s) with Research on Animal Mind‐Reading. Mind 

& Language, 29(5), 566–589. https://doi.org/10.1111/mila.12066  

Byrne, R. W., Cartmill, E., Genty, E., Graham, K. E., Hobaiter, C., & Tanner, J. (2017). Great 

ape gestures: Intentional communication with a rich set of innate signals. Animal Cognition, 

20(4), 755–769. https://doi.org/10.1007/s10071-017-1096-4  

Call, J. (2009). Contrasting the Social Cognition of Humans and Nonhuman Apes: The 

Shared Intentionality Hypothesis. Topics in Cognitive Science, 1(2), 368–379. 

https://doi.org/10.1111/j.1756-8765.2009.01025.x  

Camerer, C. (2003). Behavioral game theory: Experiments in strategic interaction. Princeton 

University Press.  

Chemero, A., & Turvey, M. T. (2007). Gibsonian Affordances for Roboticists. Adaptive 

Behavior, 15(4), 473–480. https://doi.org/10.1177/1059712307085098  

Chiba, A. A., & Krichmar, J. L. (2020). Neurobiologically Inspired Self-Monitoring Systems. 

Proceedings of the IEEE, 108(7), 976–986. https://doi.org/10.1109/JPROC.2020.2979233 

Clark, A. (2015). Embodied Prediction. Open MIND. 

https://doi.org/10.15502/9783958570115 

Clayton, P., & Davies, P. C. W. (Eds.). (2006). The re-emergence of emergence: The 

emergentist hypothesis from science to religion. Oxford University Press.  

Clayton, N. S., & Dickinson, A. (1998). Episodic-like memory during cache recovery by scrub 

jays. Nature, 395(6699), 272-274.  

Clutton-Brock, T. (2009). Cooperation between non-kin in animal societies. Nature, 

462(7269), 51–57. https://doi.org/10.1038/nature08366  

Cobianchi, L., Gigliuto, C., De Gregori, M., Malafoglia, V., Raffaeli, W., Compagnone, C., 

Visai, L., Petrini, P., Avanzini, M. A., Muscoli, C., Calabrese, F., Dominioni, T., Allegri, M., & 

Vigano, J. (2014). Pain assessment in animal models: Do we need further studies? Journal 

of Pain Research, 227. https://doi.org/10.2147/JPR.S59161  

Crockford, C., Wittig, R. M., Mundry, R., & Zuberbühler, K. (2012). Wild Chimpanzees Inform 

Ignorant Group Members of Danger. Current Biology, 22(2), 142–146. 

https://doi.org/10.1016/j.cub.2011.11.053  

Dainton, B. (2013). The perception of time. In: Miller, K., & Dyke, Heather. A companion to 

the philosophy of time (pp. 389-469). essay, John Wiley & Sons, Ltd : Chichester, UK. 

https://doi.org/10.1002/9781118522097.ch21 

Davies, J. R., Garcia-Pelegrin, E., Baciadonna, L., Pilenga, C., Favaro, L., & Clayton, N. S. 

(2022). Episodic-like memory in common bottlenose dolphins. Current Biology, 32(15), 3436-

3442.e2. https://doi.org/10.1016/j.cub.2022.06.032  

Dellaert, F. and Kaess, M. (2017), Factor Graphs for Robot Perception, Foundations and 

Trends® in Robotics: Vol. 6: No. 1-2, pp 1-139. http://dx.doi.org/10.1561/2300000043 

Deroy, O. (2023). The Ethics of Terminology: Can We Use Human Terms to Describe AI? 

Topoi, 42(3), 881–889. https://doi.org/10.1007/s11245-023-09934-1 

Deroy, O., Bacciu, D., Bahrami, B., Della Santina, C., & Hauert, S. (2024). Shared 

Awareness Across Domain‐Specific Artificial Intelligence: An Alternative to Domain‐General 



 
WP1 Conceptual framework 

D1.3 Dimensions of collaborative awareness 
 
 

 

  
 

Funded by the European Union under Grant Agreement 101070918. Views and opinions expressed are however those of the 

author(s) only and do not necessarily reflect those of the European Union or European Innovation Council and SMEs Executive 

Agency (EISMEA). Neither the European Union nor the granting authority can be held responsible for them. 
   36  

 

Intelligence and Artificial Consciousness. Advanced Intelligent Systems, 2300740. 

https://doi.org/10.1002/aisy.202300740 

Deshpande, A., Van De Waal, E., & Zuberbühler, K. (2023). Context-dependent alarm 

responses in wild vervet monkeys. Animal Cognition, 26(4), 1199–1208. 

https://doi.org/10.1007/s10071-023-01767-0  

Dorsch, J., & Deroy, O. (2024a). The impact of labeling automotive AI as ‘trustworthy’ or 

‘reliable’ on user evaluation and technology acceptance (Version 1). arXiv. 

https://doi.org/10.48550/ARXIV.2408.10905 

Dorsch, J., & Deroy, O. (2024b). “Quasi-Metacognitive Machines: Why We Don’t Need 

Morally Trustworthy AI and Communicating Reliability is Enough.” Philosophy and 

Technology, 37(2). https://doi.org/10.1007/s13347-024-00752-w 

Drugowitsch, J., Mendonça, A. G., Mainen, Z. F., & Pouget, A. (2019). Learning optimal 

decisions with confidence. Proceedings of the National Academy of Sciences, 116(49), 

24872–24880.  

Dung, L., & Newen, A. (2023). Profiles of animal consciousness: A species-sensitive, two-

tier account to quality and distribution. Cognition, 235, 105409. 

https://doi.org/10.1016/j.cognition.2023.105409  

Falk, A., Fehr, E., and Fischbacher, U. (2003). On the nature of fair behavior. Economic 

Inquiry 41, 20–26.  

von Frisch, K. (1954). The Dancing Bees: An Account of the Life and Senses of the Honey 

Bee. Springer Vienna. https://doi.org/10.1007/978-3-7091-4697-2  

Floridi, L. (2011). The Philosophy of Information. Oxford University Press. 

https://doi.org/10.1093/acprof:oso/9780199232383.001.0001  

Frith, C. D. (2012). The role of metacognition in human social interactions. Philosophical 

Transactions of the Royal Society B: Biological Sciences, 367(1599), 2213–2223. 

https://doi.org/10.1098/rstb.2012.0123 

Gallistel, C. R., & Gibbon, J. (2000). Time, rate, and conditioning. Psychological Review, 

107(2), 289–344. https://doi.org/10.1037/0033-295X.107.2.289 

Gibson, J. J. (1979). The ecological approach to visual perception. Houghton, Mifflin and 

Company.  

Hamilton, W. D. (1964). The genetical evolution of social behaviour. II. Journal of Theoretical 

Biology, 7(1), 17–52. https://doi.org/10.1016/0022-5193(64)90039-6  

Harsanyi, J. C. and Selten, R. (1988). A general theory of equilibrium selection in games. 

MIT Press.  

Hauert, S., Mitri, S., Keller, L., & Floreano, D. (2014). Evolving Cooperation: From Biology to 

Engineering. In The Horizons of Evolutionary Robotics (pp. 203). Massachusetts Institute of 

Technology (MIT) Press.  

Heyes, C. Animal mindreading: what’s the problem?. Psychon Bull Rev 22, 313–327 (2015). 

https://doi.org/10.3758/s13423-014-0704-4  

Horton, T. E., Chakraborty, A., & Amant, R. S. (2012). Affordances for robots: a brief survey. 

Avant: Trends in Interdisciplinary Studies 3 (2):70-84. 



 
WP1 Conceptual framework 

D1.3 Dimensions of collaborative awareness 
 
 

 

  
 

Funded by the European Union under Grant Agreement 101070918. Views and opinions expressed are however those of the 

author(s) only and do not necessarily reflect those of the European Union or European Innovation Council and SMEs Executive 

Agency (EISMEA). Neither the European Union nor the granting authority can be held responsible for them. 
   37  

 

Innocente, M. S., & Grasso, P. (2019). Self-organising swarms of firefighting drones: 

Harnessing the power of collective intelligence in decentralised multi-robot systems. Journal 

of Computational Science, 34, 80–101. https://doi.org/10.1016/j.jocs.2019.04.009 

Isoni, A., Poulsen, A., Sugden, R., and Tsutsui, K. (2013). Focal points in tacit bargaining 

problems: Experimental evidence. European Economic Review 59, 167–188. 

Isoni, A., Poulsen, A., Sugden, R., and Tsuitsui, K. (2019) Focal points and payoff 

information in tacit bargaining. Games and Economic Behavior 114, 193–214.  

Johnson, B. (2022). Metacognition for artificial intelligence system safety – An approach to 

safe and desired behavior. Safety Science, 151, 105743. 

https://doi.org/10.1016/j.ssci.2022.105743 

Jones, S., & Hauert, S. (2023). Frappe: Fast fiducial detection on low cost hardware. Journal 

of Real-Time Image Processing, 20(6), 119. https://doi.org/10.1007/s11554-023-01373-w  

Jones, S., & Hauert, S. (Accepted/In press). Distributed Spatial Awareness for Robot 

Swarms. Paper presented at The International Symposium on Distributed Autonomous 

Robotic Systems (DARS) 2024, New York City, New York, United States. 

Kalkman, D. (2019). New problems for defining animal communication in informational 

terms. Synthese, 196(8), 3319–3336. https://doi.org/10.1007/s11229-017-1598-2  

Karpus, J. and Radzvilas, M. (2018) Team reasoning and a measure of mutual advantage in 

games. Economics and Philosophy 34, 1–30.  

Klatzky, R.L. (1998). Allocentric and Egocentric Spatial Representations: Definitions, 

Distinctions, and Interconnections. In: Freksa, C., Habel, C., Wender, K.F. (eds) Spatial 

Cognition. Lecture Notes in Computer Science(), vol 1404. Springer, Berlin, Heidelberg. 

https://doi.org/10.1007/3-540-69342-4_1  

Lajoie, P. -Y., Ramtoula, B., Chang, Y., Carlone, L. and Beltrame, G. DOOR-SLAM: 

Distributed, Online, and Outlier Resilient SLAM for Robotic Teams IEEE Robotics and 

Automation Letters, vol. 5, no. 2, pp. 1656-1663, April 2020, doi: 

10.1109/LRA.2020.2967681 

Le Poidevin, R. (2019). The Experience and Perception of Time. The Stanford Encyclopedia 

of Philosophy (Summer 2019 Edition), Edward N. Zalta (ed.), URL = 

<https://plato.stanford.edu/archives/sum2019/entries/time-experience/>. 

Lewes, G. H. (1877). Problems of life and mind (Vol. 2). Trübner & Company.  

Lourenco, I., Ventura, R., & Wahlberg, B. (2020). Teaching Robots to Perceive Time: A 

Twofold Learning Approach. 2020 Joint IEEE 10th International Conference on Development 

and Learning and Epigenetic Robotics (ICDL-EpiRob), 1–7. https://doi.org/10.1109/ICDL-

EpiRob48136.2020.9278033 

Lurz, R. W. (2011). Mindreading animals: The debate over what animals know about other 

minds. MIT Press.  

Maniadakis, M., Trahanias, P., & Tani, J. (2009). Explorations on artificial time perception. 

Neural Networks, 22(5–6), 509–517. https://doi.org/10.1016/j.neunet.2009.06.045 

Maniadakis, M., Aksoy, E. E., Asfour, T., & Trahanias, P. (2016). Collaboration of 

heterogeneous agents in time constrained tasks. 2016 IEEE-RAS 16th International 



 
WP1 Conceptual framework 

D1.3 Dimensions of collaborative awareness 
 
 

 

  
 

Funded by the European Union under Grant Agreement 101070918. Views and opinions expressed are however those of the 

author(s) only and do not necessarily reflect those of the European Union or European Innovation Council and SMEs Executive 

Agency (EISMEA). Neither the European Union nor the granting authority can be held responsible for them. 
   38  

 

Conference on Humanoid Robots (Humanoids), 448–453. 

https://doi.org/10.1109/HUMANOIDS.2016.7803314 

Maniadakis, M., Hourdakis, E., Sigalas, M., Piperakis, S., Koskinopoulou, M., & Trahanias, 

P. (2020). Time-Aware Multi-Agent Symbiosis. Frontiers in Robotics and AI, 7, 503452. 

https://doi.org/10.3389/frobt.2020.503452 

Maynard Smith, J. (1964). Group selection and kin selection. Nature 201, 1145–1147.  

Maynard Smith, J. (1982). Evolution and the theory of games. Cambridge University Press.  

Maynard Smith, J., & Price, G. R. (1973). The Logic of Animal Conflict. Nature, 246(5427), 

15–18. https://doi.org/10.1038/246015a0  

McConville, A., Tzoumas, G., Salinas, L. R., Munera, M., & Hauert, S. (2024). Adoption of 

UAV Swarm Technology: Survey and Opinions of Firefighters. 2024 IEEE International 

Conference on Advanced Robotics and Its Social Impacts (ARSO), 228–234. 

https://doi.org/10.1109/ARSO60199.2024.10557806  

McMillan, C. T., Rascovsky, K., Khella, M. C., Clark, R., & Grossman, M. (2012). The neural 

basis for establishing a focal point in pure coordination games. Social Cognitive and 

Affective Neuroscience, 7(8), 881–887. https://doi.org/10.1093/scan/nsr070  

Mehta, J., Starmer, C., and Sugden, R. (1994). The nature of salience: An experimental 

investigation of pure coordination games. The American Economic Review 84, 658–673.  

Melis, A. P., & Semmann, D. (2010). How is human cooperation different? Philosophical 

Transactions of the Royal Society B: Biological Sciences, 365(1553), 2663–2674. 

https://doi.org/10.1098/rstb.2010.0157  

Morwald, T., Zillich, M., Prankl, J., & Vincze, M. (2011). Self-monitoring to improve 

robustness of 3D object tracking for robotics. 2011 IEEE International Conference on 

Robotics and Biomimetics, 2830–2837.  

Mylopoulos, M. (2017). A cognitive account of agentive awareness. Mind & Language, 32(5), 

545–563. https://doi.org/10.1111/mila.12158  

Newcombe, N. S., Balcomb, F., Ferrara, K., Hansen, M., & Koski, J. (2014). Two rooms, two 

representations? Episodic‐like memory in toddlers and preschoolers. Developmental 

Science, 17(5), 743–756. https://doi.org/10.1111/desc.12162  

Proust, J. (2014). Metacognition and mindreading: one or two functions. In: Beran, M. J., 

Brandl, J., Perner, J., & Proust, J. Foundations of Metacognition (234-251). OUP Oxford.  

Radzvilas, M. and Karpus, J. (2021). Team reasoning without a hive mind. Research in 

Economics 75, 345–353.  

Roldán-Gómez, J. J., González-Gironda, E., & Barrientos, A. (2021). A Survey on Robotic 

Technologies for Forest Firefighting: Applying Drone Swarms to Improve Firefighters’ 

Efficiency and Safety. Applied Sciences, 11(1), 363. https://doi.org/10.3390/app11010363 

Saeedi, S., Trentini, M., Seto, M., & Li, H. (2016). Multiple-Robot Simultaneous Localization 

and Mapping: A Review: Multiple-Robot Simultaneous Localization and Mapping. Journal of 

Field Robotics, 33(1), 3–46. https://doi.org/10.1002/rob.21620 



 
WP1 Conceptual framework 

D1.3 Dimensions of collaborative awareness 
 
 

 

  
 

Funded by the European Union under Grant Agreement 101070918. Views and opinions expressed are however those of the 

author(s) only and do not necessarily reflect those of the European Union or European Innovation Council and SMEs Executive 

Agency (EISMEA). Neither the European Union nor the granting authority can be held responsible for them. 
   39  

 

Schel, A. M., Townsend, S. W., Machanda, Z., Zuberbühler, K., & Slocombe, K. E. (2013). 

Chimpanzee Alarm Call Production Meets Key Criteria for Intentionality. PLoS ONE, 8(10), 

e76674. https://doi.org/10.1371/journal.pone.0076674  

Schelling, T. C. (1960). The Strategy of Conflict. Cambridge and London: Harvard University 

Press.  

Seraj, E., Silva, A., & Gombolay, M. (2019). Safe Coordination of Human-Robot Firefighting 

Teams (arXiv:1903.06847). arXiv. http://arxiv.org/abs/1903.06847 

Seyfarth, R. M., Cheney, D. L., & Marler, P. (1980). Vervet monkey alarm calls: Semantic 

communication in a free-ranging primate. Animal Behaviour, 28(4), 1070–1094. 

https://doi.org/10.1016/s0003-3472(80)80097-2  

Seyfarth, R. M., & Cheney, D. L. (2003). Signalers and Receivers in Animal Communication. 

Annual Review of Psychology, 54(1), 145–173.  

Skyrms, B. (2004). The Stag Hunt and the evolution of social structure. Cambridge 

University Press. 

Skyrms, B. (2010). Signals: Evolution, learning, & information. Oxford University Press.  

Soares, S., Atallah, B. V., & Paton, J. J. (2016). Midbrain dopamine neurons control 

judgment of time. Science, 354(6317), 1273–1277. https://doi.org/10.1126/science.aah5234 

Soter, G., Conn, A., Hauser, H., & Rossiter, J. (2018). Bodily Aware Soft Robots: Integration 

of Proprioceptive and Exteroceptive Sensors. 2018 IEEE International Conference on 

Robotics and Automation (ICRA), 2448–2453. https://doi.org/10.1109/ICRA.2018.8463169  

Spencer, R. W. (2024). The Building Blocks of Consciousness (Version 1). arXiv. 

https://doi.org/10.48550/ARXIV.2405.06075  

Sperber, D., & Mercier, H. (2018). Why a modular approach to reason? Mind & Language, 

33(5), 533–541. https://doi.org/10.1111/mila.12208 

Stachowicz, D., & Kruijff, G.-J. M. (2012). Episodic-Like Memory for Cognitive Robots. IEEE 

Transactions on Autonomous Mental Development, 4(1), 1–16. 

https://doi.org/10.1109/TAMD.2011.2159004  

Strasser, A. (2018). Minimal Mindreading and Animal Cognition. Grazer Philosophische 

Studien, 95(4), 541-565. https://doi.org/10.1163/18756735-000048  

Sugden, R. (1993). Thinking as a team: towards an explanation of nonselfish behavior. 

Social Philosophy and Policy 10, 69–89.  

Tomasello, M., & Carpenter, M. (2007). Shared intentionality. Developmental Science, 10(1), 

121–125. https://doi.org/10.1111/j.1467-7687.2007.00573.x  

Tomasello, M. (2022). The coordination of attention and action in great apes and humans. 

Philosophical Transactions of the Royal Society B: Biological Sciences, 377(1859). 

https://doi.org/10.1098/rstb.2021.0093  

Tzoumas, G., Pitonakova, L., Salinas, L., Scales, C., Richardson, T., & Hauert, S. (2023). 

Wildfire detection in large-scale environments using force-based control for swarms of 

UAVs. Swarm Intelligence, 17(1–2), 89–115. https://doi.org/10.1007/s11721-022-00218-9  

Tzoumas, G., Salinas, L., McConville, A., Richardson, T., & Hauert, S. (2024). Use case 

design for swarms of firefighting UAVs via mutual shaping. 2024 IEEE International 

https://doi.org/10.1126/science.aah5234


 
WP1 Conceptual framework 

D1.3 Dimensions of collaborative awareness 
 
 

 

  
 

Funded by the European Union under Grant Agreement 101070918. Views and opinions expressed are however those of the 

author(s) only and do not necessarily reflect those of the European Union or European Innovation Council and SMEs Executive 

Agency (EISMEA). Neither the European Union nor the granting authority can be held responsible for them. 
   40  

 

Conference on Advanced Robotics and Its Social Impacts (ARSO), 43–48. 

https://doi.org/10.1109/ARSO60199.2024.10558013  

Varela, F. J. (1999). Present-time consciousness. Journal of consciousness studies, 6(2-3), 

111-140. 

Visco-Comandini, F., Ferrari-Toniolo, S., Satta, E., Papazachariadis, O., Gupta, R., Nalbant, 

L. E., & Battaglia-Mayer, A. (2015). Do non-human primates cooperate? Evidences of motor 

coordination during a joint action task in macaque monkeys. Cortex, 70, 115–127. 

https://doi.org/10.1016/j.cortex.2015.02.006  

Voinov, P. V., Call, J., Knoblich, G., Oshkina, M., & Allritz, M. (2020). Chimpanzee 

Coordination and Potential Communication in a Two-touchscreen Turn-taking Game. 

Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-60307-9  

Wilson, E. O. (2000). Sociobiology: The new synthesis (25th anniversary ed). Belknap Press 

of Harvard University Press.  

Winfield, A. (2019). Ethical standards in robotics and AI. Nature Electronics, 2(2), 46–48. 

https://doi.org/10.1038/s41928-019-0213-6 

 

  



 
WP1 Conceptual framework 

D1.3 Dimensions of collaborative awareness 
 
 

 

  
 

Funded by the European Union under Grant Agreement 101070918. Views and opinions expressed are however those of the 

author(s) only and do not necessarily reflect those of the European Union or European Innovation Council and SMEs Executive 

Agency (EISMEA). Neither the European Union nor the granting authority can be held responsible for them. 
   41  

 

Appendix A:  Glossary 

Awareness: The situatedness of an artificial system in a multidimensional space of action-

perception abilities (Meertens, under review). 

Awareness refers to the capacities these systems can be given to enable adaptation and 

navigation in dynamic, complex environments. It also encapsulates the system’s or 

collective’s degree of interaction with itself, others, and its environment, structured along 

various dimensions. 

Degree of awareness: awareness is approached as a graded phenomenon, rather than an 

on/off property, or a hierarchical levelled approach.  

Awareness profile: A unique configuration representing an artificial system's awareness 

across multiple dimensions, offering a snapshot of its action-perception abilities at a given 

time.  

Dimensions of awareness: Awareness does not vary along a singular scale but across 

multiple, distinct aspects or "dimensions." These dimensions allow comparison between 

different systems, reflecting varying abilities like spatial, temporal, or meta-cognitive 

awareness. The use of dimensions permits flexible, non-linear comparisons, avoiding 

assumptions of a universal standard for awareness. 

Capacity or ability: A multi-track dispositional property indicating the potential for success in 

certain tasks. Each dimension of awareness is tied to a set of abilities that a system or agent 

possesses, which enables the successful execution of tasks associated with that ability. 

Collaborative awareness: the time-bound adaptive pursuit of multi-agent goals, including 

through changes in the environment and group rates or compositions.   

Levels of collaboration: Collaboration encompasses a range of behaviors, from simple 

communication to more complex coordination and cooperation. These levels, while not 

strictly hierarchical, are often interdependent, with more sophisticated levels building upon 

foundational ones.  

Communication: The capacity for sharing information between agents, ranging from simple 

signals or broadcasts to more complex, interactive exchanges. Communication can occur at 

varying levels of sophistication, depending on the agents' abilities and goals. 

Coordination: occurs when agents with distinct, yet interdependent, goals work together to 

ensure that their activities align for mutual benefit. 

Cooperation: occurs when agents share a common goal, leading to the alignment of their 

activities to achieve that shared objective. 

Agency: The system's ability to exert control over its actions and outcomes, often tied to 

counterfactual thinking (the capacity to act otherwise) and causal influence on the 

environment or other agents. 

Reliability: The consistency with which a system or agent performs its tasks or meets 

expectations. Unlike trustworthiness, which implies normative reasoning, reliability is based 

on observable and measurable performance over time. 

Confidence: The system’s self-assessment of its ability to succeed or achieve a goal. 

Confidence involves evaluating the certainty or uncertainty related to specific actions or 

decisions. 
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Explainability: The degree to which a system can make its processes, decisions, and 

actions understandable to human users. It emphasizes transparency and clarity, ensuring 

that the system's behaviour can be interpreted and followed. 

Justifiability: The system’s ability to provide reasons or rationale for its decisions and 

actions, particularly when questioned. Justifiability connects explainability to a normative 

framework, ensuring actions are not only understood but ethically or logically sound. 

 

 

 


