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Abstract

Awareness in biological agents has converging definitions when considering local states de-
scribing content-related consciousness from an agent-specific perspective. However, it be-
comes highly debated when it comes to global states. The issue magnifies when considering
collectives of artificial agents. Several frameworks exist, all unsatisfactory in the limitations
posed to agents’ heterogeneity and disappearance of the local self into an integrated state.

Ultimately, existing frameworks are ineffective in explaining, facilitating, and supporting cooper-
ative behaviours in artificial agents. The lack of a compelling theory of global awareness in AI
is currently a significant barrier to the effective deployment of artificial agents in the real world.

EMERGE tackles this grand challenge by introducing the novel concept of collaborative aware-
ness for collectives of minimal artificial beings. We will investigate how simple agents can
develop a representation of their mutual existence, environment, and cooperative behaviour
towards the realisation of tasks and goals.

EMERGE builds on a scenario of artificial beings with no shared language and constrained
individual capabilities, which nevertheless leads to high-complexity behaviours at the collec-
tive level. Collaborative awareness becomes an emergent process supporting complex, dis-
tributed, and loosely coupled systems capable of high degrees of collaboration, self-regulation,
and interoperability without predefined protocols.

EMERGE delivers a philosophical, mathematical, and technological framework that enables
us to know how and where to allocate awareness to optimally achieve a goal through the
collective. We will demonstrate EMERGE concepts on robotic use cases, with hints of the
broader applicability of the framework to the Internet of Things, pervasive computing, and
nanotechnologies. We will also investigate the ethical implications of collaborative awareness,
focusing on moral responsibility, vulnerabilities, and trust.
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Executive Summary

This document is a deliverable of the EMERGE project, funded under grant agreement number
101070918. This deliverable, D5.2 Emergent Awareness Control, is a report describing the
conditions leading to different resolutions of awareness with examples in simulation and results
on how to control emergence of awareness.

We detail our new method of giving agent collectives a Distributed Spatial Awareness (DSA),
based purely on local sensing and communication. We then describe a methodology for com-
bining different dimensions and metrics of awareness with task performance measures. This
is illustrated with complex swarm logistics task, showing potential trade-offs needed to build
artificial aware systems. Finally, we examine ways to automatically design for the emergence
of the most task-effective forms of awareness.

1 Introduction

In Section 2, we first discuss the development and application of a new form of awareness for
artificial collectives - Distributed Spatial Awareness, or DSA. By giving agents limited range
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communication, noisy measurement, and random movement, and by using Gaussian Belief
Propagation as a distributed, incremental, and robust factor graph optimisation paradigm, we
enable a collective of agents to converge on a shared, swarm-centric, reference frame. This ref-
erence frame sits entirely within the tenets of swarm/emergent engineering, having no reliance
or dependence on central resources or global knowledge. We call this ability Distributed Spatial
Awareness, which when applied to swarm robotics, enables swarm algorithms capable of tasks
at higher levels of performance than previously possible, such as pattern formation, or logistics
applications. DSA is computationally cheap enough to be supported on low cost hardware,
and by tuning parameters related to the frequency of communication and update rate of the
underlying distributed factor graphs, we can trade-off degrees of awareness, convergence time,
and computational cost.

We then move on to Section 3, where we discuss the ways in which we can use new forms
of awareness, together with ways of measuring awareness, introduced in deliverable D5.1, to
design more effective artificial systems, using swarm robotics as a use-case. We provide clear
definitions of terminology, clarifying the lens through which to discuss these artificial aware
systems, then describe an implementation pipeline by which to craft and characterise actual
systems. We use the example of a swarm robotics collective transport scenario, and target
the relationship between task performance and two dimensions of awareness; spatial aware-
ness (DSA) and self-awareness (fault detection). We follow the steps of our implementation
pipeline to build a simulation and characterisation platform and use this to show the sometimes
surprising relationships, more awareness is not always associated with better performance.

In Section 4 we examine ways that we can actively and automatically design for the emergence
of desired forms of awareness, specifically forms of communication and information sharing to
enable coordination and cooperation. We construct a model where two different forms are
available; direct communication, and indirect communication via the environment - stigmergy.
In a set of experiments, we show that our automatic design method can both design effective
controllers for different tasks, and select between the most appropriate communication modal-
ity. Swarms of simulated augmented e-puck robots can communicate either with coloured LED
signalling, or by leaving pheromone traces in the environment, with no predefined commu-
nication protocols. The swarm is given a series of tasks requiring degrees of cooperation in
order to succeed. Through the automatic design process, action and communication strategies
co-emerge.

Finally, in Section 5 we briefly sketch out possible paths for future work, looking at ways to
use automatic methods, such as evolutionary algorithms, to make use of the already existing
dimensions of awareness in new and innovative ways. We also look at the possibility of al-
gorithmically discovering new dimensions of awareness for heterogeneous systems, including
robots, devices, and humans.

2 Distributed Spatial Awareness

Building a distributed spatial awareness within a collective of agents enables higher levels of
coordination. When applied to swarm robotics, this enables locally sensing and communicating
agents to perform new swarm algorithms. We use local observations by robots of each other
and Gaussian Belief Propagation message passing combined with continuous swarm move-
ment to build a global and distributed swarm-centric frame of reference. With low bandwidth
and computation requirements, this shared reference frame allows new swarm algorithms. We
characterise the system in simulation and demonstrate two example algorithms.

Swarm robotics, inspired by swarms in nature, has the potential for resilient, robust, and re-

9
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dundant solutions to a wide range of problems such as mapping, logistics, search and rescue,
disaster recovery, and environmental monitoring. Many relatively simple and cheap robots,
each following simple rules, with local interactions between themselves and the environment
are capable of producing a desired emergent swarm-level behaviour [55, 31, 12, 2, 60, 32].

There are many areas of swarm algorithm design where access to global information would be
useful, but unless that information is inferred or constructed through purely local interactions, it
does not fit within the distributed swarm paradigm. One example is spatial awareness, by
which we mean that an agent within the swarm is aware of its own location with respect
to the swarm as a whole; the swarm shares a spatial reference frame. The availability of
a completely distributed, completely local, low cost, shared reference frame would open up
algorithmic approaches previously not possible. By using Gaussian Belief Propagation [13], we
can construct this within a swarm of robots based only on local observation and messaging.
Robots move around, constructing a distributed, size-limited factor graph of observations of
other robots and odometry information. Message passing within and between neighbouring
robots results in convergence on a shared frame of reference; each robot knows where it is
in relation to it. To demonstrate the potential of this, we focus on two applications, shape
formation and logistics.

Shape formation. Shape or pattern formation in robot swarms is widely studied. The use of a
swarm to perform a task is often implicitly or explicitly dependent upon that swarm maintaining
a particular shape or covering a particular area. Swarm shape formation is a proxy for a
number of real-world problems such as search and rescue or emergency communication.
Many problems rely on the swarm maintaining a coherent shape or coverage of particular
areas. This has been tackled in swarm robotics in a number of ways which in their essence
involve the construction of a frame of reference, or coordinate system. These systems often
rely on robots transitioning to a static state to serve as anchors for further extensions to the
shape and coordinate system, or unrealistic assumptions of position knowledge, [51, 52, 38,
10].

Logistics. The use of swarms for intralogistics is an emerging area, where perhaps we
can move beyond the lab into real-world applications. Swarm logistics can be regarded as
a real-world application of foraging [62]. With our DOTS [30] robots we aim to demonstrate
a simple but functional application where we specifically focus on the out-of-the-box, easily
deployable solutions for everyday environments, as described in [29]. Even simple random
walk algorithms are capable of effective retrieval in logistics applications [41] and adding spatial
awareness allows for improved algorithms. Messages from users propagate from robot to
robot, robots store and retrieve items, all in parallel and without central resources. Although
simple, this scenario encapsulates many issues that will need to be solved for viable swarm
logistics systems to become a reality.

2.1 Simulator

We work in simulation, with the intention of transferring the work to real robots in the future.
As such, we use an abstract model of our real robots, the DOTS; each robot is modelled as a
2 kg disk, 250 mm in diameter, that can move holonomically at up to vmax = 1ms−1, and can
sense and identify other robots and objects to a distance of rsense = 0.5m. Communication
is possible between any robots that can sense each other. Each robot has imperfect sensors
distorted by Gaussian noise; a velocity sensor v⃗sense = GTvrobot · N (1, σ2

velocity), and a relative
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Figure 1: Simulation of robots performing DSA-RW to locate cargo carriers, with various
elements of the visualisation labelled. Within the carrier squares are overlayed
the current swarm estimates of the carrier position, already showing good
correspondence after two minutes of simulated time.

position sensor p⃗object = GTobject − GTrobot + N (0, σ2
position) where GTk is the ground truth

from the simulator. The robot maintains odometry p⃗odom =
∑

v⃗sense, integrated since the last
variable node was created.

The simulator is written in C++, using the Box2D physics engine. Updates to the simulation
occur at 60 Hz. The arena is a square area with fixed walls. Robot motion is modelled as a
disk with friction sliding on the arena surface, collisions between robots and with walls follow
physics. Low level proportional control of the force applied to the robot body is used to satisfy
the commanded velocity. As well as robots, there can be objects that can be detected by the
robots. For each robot a list of robots and objects within rsense range is maintained, and at each
timestep a set of abstract senses is constructed and a controller routine is executed on those
senses to generate a commanded velocity. Figure 1 shows a visualisation.

2.2 Gaussian Belief Propagation

Gaussian Belief Propagation (GBP) is a method of performing distributed iterative probabilistic
inference or state estimation on a graph of relations between Gaussian variables by means of
message passing. It is not new but has received recent attention, with convergence guarantees
and applicability to distributed systems. Davison [13] makes the argument that the completely
decentralised and incremental processing of GBP is a better fit for future systems as process-
ing power becomes more distributed. This naturally fits with the swarm robotics paradigm, and
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allows the inference of global properties by using purely local interactions.

For our work with the DOTS robots, we use only a linear 2D state representation, and only
factors of one or two variables. This simplifies the mathematics, but the principle can and
has been applied to non-linear representations such as SE(2). Gaussian variables x⃗i in
the moments form N (x⃗i;µi,Σi) can also be represented in the canonical/information form
N−1(x⃗i; ηi,Λi), connected by the identities: Λ = Σ−1, η = Λµ, where Λ is the precision matrix
and η the information vector. Hereafter, when specifying components, we use the notation
(η,Λ)G ≡ (µ,Σ)G. Factor fj(x⃗j) connects to a single variable and specifies a prior, defined
by the Gaussian constraint z⃗j = (ηj ,Λj)G. Factor fk(x⃗k1, x⃗k2) connects two variables x⃗k1, x⃗k2
and specifies a measurement, comprising the functional relationship h⃗k(x⃗k1, x⃗k2) = x⃗k2 − x⃗k1,
and the constraint z⃗k = (ηk,Λk)G. The GBP algorithm requires three steps: factor-to-variable
message mf→x, variable-to-factor-message mx→f , and belief update b(x). All messages
are in the form (η,Λ)G. The schedule of operations, and nodes upon which the operations take
place, can be entirely arbitrary and asynchronous.

Belief update: A variable x⃗i has its belief updated as the product of messages from all
connected factors. In canonical form, this is expressed as a sum:

b(x⃗i) =

 ∑
f∈n(x⃗i)

ηf→x,
∑

f∈n(x⃗i)

Λf→x


G

(1)

where n(x⃗i) are all the factors connected to x⃗i.

Variable-to-factor message: The message to a connected factor is the product of the incom-
ing messages from all other connected factors:

mx→fj =

 ∑
f∈n(x⃗i)\fj

ηf→x,
∑

f∈n(x⃗i)\fj

Λf→x


G

(2)

Factor-to-variable message: For a single variable factor, this is simply the factor.

f(x⃗) : mf→x = z⃗ (3)

For a two variable measurement factor, this is the product of the factor and the message from
the other variable, marginalising out the other variable. Alternatively, the message to a variable
is the precision weighted sum of the message from the other variable and the measurement
vector z⃗.

Let αp =
Λf

Λf + Λp
(4)

f(x⃗i, x⃗j) : mf→xi
=

(
(1− αxj )ηf + αxjηxj ), αxjΛxj

)
message to x⃗i (5)

f(x⃗i, x⃗j) : mf→xj
= ((1− αxi)ηf + αxiηxi), αxiΛxi) message to x⃗j (6)

One modification we make to the original algorithm is to note that:

mx→fj = b(x⃗i)−mfj→x (7)

Variable nodes just calculate their beliefs and send them as messages, and factor nodes locally
calculate what the variable-to-factor message would have been by subtracting the last message
sent to that variable. This minimises the non-local knowledge needed in any node.
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Table 1: Simulation parameters

Parameter Value Description

nwindow 10 Max number of variable nodes in local factor graph

tnode 0.5 s New variable node creation interval

rsense 0.5 m Object and robot sense and communication radius

σvelocity 0.1 m/m Velocity sense noise (metres per metre travelled)

σposition 0.02 m Position sense noise

vfast 0.5 ms−1 Movement performing DSA-RW and DSA-KE

vslow 0.05 ms−1 Movement within shape while performing DSA-SF

2.3 Distributed factor graph construction

We construct a shared reference frame for the swarm in the following way: Each robot builds
a local factor graph with variables representing 2D pose, unary anchor factors connecting to a
single variable, and binary relative measurement factors connecting two variables. Each robot
shares synchronised time, and at regular intervals tnode from a starting epoch a new timestep
tsi is issued and a new variable node x⃗i is created. At any given time, the pose of the robot
relative to the shared reference frame is p⃗robot = x⃗i + p⃗odom.

The first node to be created will have an anchor factor connected to it with a weak prior of
pose (0, 0). Successive nodes have a measurement factor connecting them: fx⃗i→x⃗i−1

(µ =
p⃗odom,Σ = σ2

velocityI2). As new variable nodes are created, old ones are removed to maintain
a maximum number of nodes nwindow, with the now oldest variable having an anchor factor
attached to it set to the belief of that variable. At every tmessage interval, a factor node is chosen
at random, and messages are propagated to each connected variable according to the GBP
algorithm. Each connected variable then has its belief updated.

As described, this local factor graph is purely a bounded time window sampling of the odometry
of the robot. In order to connect the local factor graphs together into a swarm whole, we add
two things: 1) Robots observe other robots within their sensory range and create measurement
factors f(µ = p⃗object,Σ = σ2

positionI2) that link the current variable node on the observing robot
to the observed robot. These factors, termed outward-facing, are given the current timestep
tsi and the ID of the other robot. This uniquely identifies the variable at the other robot that it
links to. 2) Robots in sensory range exchange GBP messages. At the same tmessage interval
as above, the robot chooses a single other robot from any within rsense range and sends a
message request. This consists of a list of the timesteps of all outward-facing factors that
connect to the other robot. The responding robot replies with a list of beliefs from the variables
those factors uniquely connect to, and a list of messages from remote factors that connect to
local variables of the requesting robot.

The factors linking variable nodes on different robots create the constraints that produce con-
vergence of local pose estimates into a shared consistent state, i.e a shared reference frame.
This process is illustrated in Figure 2. Assume that robot x has sensed robot y, this is the
process that follows. It sends a list of the timesteps of outward-facing factors connected
to robot y, which will just be {6}, for the factor connecting x6 to y6. Robot y replies with
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Robot x

Robot y

y observes x

x, y observe
each otherodometry

measurements

position
measurements

Robot x factor graph

Robot y factor graph

Anchor
factor

Odometry
factor

Outward-facing
measurement factor

Figure 2: Robots creating connected factor graphs. Left: Two robots move on trajectories,
making odometry measurements, that bring them within sensing range of each other.
Right: The internal factor graphs that are created on each robot, assuming nwindow =
4 and some time has passed. The oldest variable node in each graph, x3, y3, has
an anchor factor. Between each variable node is an odometry measurement factor
node. In timestep ts5, robot y has observed robot x, creating an outward-facing
relative position measurement factor. In ts6, both robots have observed each other.

{b(y6),mf→x6 ,mf→x5}. Robot x has now got message information needed to update the be-
liefs of x5, x6, and to create an outward message from fm attached to x6. Relevant parameters
are detailed in Table 2.

2.4 Convergence measures and proxies

As robots encounter each other and exchange messages, and individual robots perform mes-
sage passing on their individual fragments of the factor graph, the pose of each robot becomes
constrained against others, thus the assumed origin or reference frame of each robot con-
verges, Figure 3. This process is dynamic, and will never completely converge, since robots
are moving and have noisy perceptions, and the whole graph does not remain fully connected.
The error is the mean deviation from the swarm centroid of the robot origins:

rerror =
1

nrobots

nrobots∑
i=1

|r⃗iorigin − µorigin| (8)

This is only knowable from the global perspective of the simulator. We define the convergence
time tconv as the time taken for error to reach rerror < 2σposition since position observation noise
dominates convergence error.

To make the shared reference frame useful to a swarm system, individual agents within the
swarm need to know when they can rely on estimates but they have no access to the global
measure rerror. In characterising the system, we collect data on the time taken for agents to
encounter at least half the robots in the swarm, denoted tmet half . We reason that this, with
some constant, should be a reasonable proxy for the time taken to build a fully converged
reference frame:

tconvproxy = β · tmet half (9)

To implement this, each robot keeps a count of the number of unique other robots it has
encountered. When this exceeds half the size of the swarm, the time is noted and tproxyconv
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1 2 3

4 5 6

Figure 3: Illustration of shared reference frame convergence. 1) All robots start by thinking
they are at the centre of the swarm. 2) Observation and communication imposes
constraints on location of the swarm centroid; the top two robots communicate.. 3)
.. and each robot updates its own estimate. 4) More communication imposes further
constraints. 5) Origin estimates move closer.. 6) ..and approach convergence.

calculated. Only when the elapsed time is greater than this is it possible to use the shared
reference frame derived p⃗robot. The two example algorithms below wait for this before switching
behaviour from the baseline random walk controller DSA-RW.

2.5 Simulation results

We cover three areas. Firstly, we examine the computation, bandwidth, and convergence
properties across many different scenarios. These allow us to develop a proxy measure of
convergence, indicating when it is meaningful to use the shared reference frame. Then we look
at performance with a simple shape formation algorithm, and finally, a logistics application,
where distributed and up-to-date information about dynamic objects in the environment is
acquired, both with random movement, and also with actively seeking areas of low knowledge
to be explored.

Parameterisation We examine how long the distributed factor graph takes to converge, tconv,
and how much computation and bandwidth is used in different scenarios.

We look at different tmessage update periods of the factor graph, and different numbers of robots
in an arena sized to keep a constant robot density of 0.4 m−2. See Figure 4. Convergence
takes longer when there are robots over a larger area, this is expected, since all robots have to
be able to influence each other, though not necessarily by direct communication. Density has
little effect on convergence, the dominating factors are update rate and arena area. There is
little gain from rapid updates over 10 Hz.

Computation and bandwidth are both proportional to update frequency so we use a fixed sized
arena of 25 m2 and update rate of 10 Hz to look at other factors. All operations are performed in
32 bit floating point. Since we are working in 2D space with linear factors, the precision matrix
Λ can be represented as a single number. Belief update needs 3 operations per attached
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Figure 4: Convergence time with different factor graph update rates and different arena areas,
with fixed robot density. Reduction in convergence time is minimal below 0.1 s update
period.

Table 2: Computation, bandwidth, and convergence time for different densities of robots within
a 5 m × 5 m arena, with updates at 10 Hz. Resource usage is low, making it possible
to run the DSA algorithm on even very limited computational hardware.

Robots Density (robots/m2) FLOPs Bandwidth (bytes/s) Tconv (s)

12 0.5 650 380 68

25 1.0 780 730 78

50 2.0 800 1100 89

100 4.0 900 1600 140

factor (Eqn 1). Factor message generation only needs computation for measurement factors;
2(Eqn 4)+1+2+2+1(Eqn 5)+2+2+1(Eqn 6) = 13 operations. Assuming a naive message
protocol, every request has an overhead of 12 bytes, and 4 bytes per outward-facing factor,
and each response has an overhead of 12 bytes, and 16 bytes per returning belief and factor-
to-variable message.

There is a weak dependence of computation on density, as there are more chances to create
additional outward-facing factors. Bandwidth is strongly dependent on robot density, as there
are many more opportunities for a robot to communicate, Table 2. It should be noted that the
raw figures for supporting the shared reference frame are remarkably low; for a 25 m2 arena, a
small swarm will converge in less than 70 s, with each robot using only a few hundred floating
point operations and exchanged message bytes per second. This is achievable even on low
cost processors.

As noted above, we need a local proxy for the convergence time tconv. In order to determine
an appropriate value for β (Eqn 9), we ran a set simulations over different numbers of robots
between 5 and 100, and different arena sizes between 4 m2 and 100 m2, fixing the update
period tmessage = 0.1 s. Simulations were run for 1000 simulated seconds. Out of 4200
simulations, 2886 were able to find an initial placement for the robots in the arena size, and
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Figure 5: The distribution of the robot encounter measure tmet half over 2886 simulations with
different numbers of robots between 5 and 100, and different arena sizes between
4 m2 and 100 m2. Using a constant β = 3 ensures the proxy convergence time
tproxyconv exceeds the true convergence time tconv in more than 95% of simulation.
Right scatter plot coloured according to arena area.

reached convergence within the simulation run time. We can see from the graphs in Figure 5
that using a value of β = 3 ensures the proxy measure tproxyconv exceeds the true measure
tconv in 95% of simulations.

Shape formation Because each robot has access to the shared reference frame, it is easy
to construct algorithms for swarm-wide shape formation. To demonstrate this, we use a simple
algorithm called DSA-SF (Distributed Spatial Awareness - Shape Formation) where the shape
is defined functionally, fin shape(probot), and shown in Algorithm 1. Each robot has two modes
of behaviour; when not inside the shape according to its estimated position p⃗robot, it uses the
baseline behaviour DSA-RW. When inside the shape, it slows down to vslow = 0.1 · vfast, and
if there are any neighbours, it moves towards them, causing classic swarm aggregation. We

Algorithm 1 DSA-SF Shape formation
if not IN SHAPE(probot) then

v⃗cmd vel = vfast · DSA-RWdirection

else
if nneighbours > 0 then

v⃗cmd vel = (vslow,∠neighbours)
else

v⃗cmd vel = vslow · DSA-RWdirection

end if
end if

define some simple shapes such as a circle, vertical and horizontal lines, and wavy lines, and
switch between them at intervals.

We ran simulations using 150 robots, with an arena size of 7.5 m per side. After reaching
convergence, each robot followed Algorithm 1, with the shape function switching at regular
intervals. Figure 6 shows snapshots of the process, with the desired shapes emerging within
about 40 seconds in each case.

The algorithm is extremely simple, yet forms and cleanly transitions between shapes even
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Figure 6: Shape formation. 150 robots perform random walk DSA-RW when outside shape,
and slow down and aggregate when inside shape, taking about 40 seconds to form
each pattern.

without fine tuning of parameters.

Intralogistics As noted above, even random walkers are capable of performing simple swarm
logistics operations. We want to enhance the performance of such systems using the shared
reference frame. A key component to a logistics system is knowledge of the location of cargo
carriers. Carriers C are dynamic objects that may move. Each robot maintains a set of
Gaussian variables and an associated time of observation c(i) ≡ (x⃗icarrier, t

i
observed), i ∈ C,

one for each possible carrier. When a robot observes a carrier k, it sets the tuple c(k) =
((p⃗robot + p⃗carrier, σ

2
position + σ2

robot)G, t). Each time a robot exchanges messages with another
robot, it sends a list of the observation times tiobserved, i ∈ C it has, including t = 0 for carriers
for which it has no observation. The other robot replies with any carrier observations it has that
are more recent, these are used to replace the older observations. More recent observations
are privileged, even if they may have greater positional uncertainty, since the carrier may have
moved.

Algorithm 2 DSA-KE Knowledge Enhancement
if any tiobserved = 0, i ∈ C then

v⃗cmd vel = vfast · DSA-RWdirection

else
j = argmin(tiobserved, i ∈ C)

d⃗ = x⃗jcarrier − p⃗robot
v⃗cmd vel = vfast · d⃗

end if
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The way the robots move has an impact on the acquisition of knowledge about the environment.
When the swarm has no knowledge, the goal is to cover as much of the arena area as
possible. For this, we use the baseline behaviour DSA-RW. Once the swarm has a certain
level of awareness, it becomes possible to use this information to guide swarm exploration so
as to maximise knowledge. This behaviour is called DSA-KE (Distributed Spatial Awareness
- Knowledge Enhancement), and is identical to DSA-RW until a robot has some information
about all the carriers in the environment. At that point, instead of choosing a direction at
random, a robot will choose the direction of the carrier which it has oldest knowledge about,
thus the swarm as a whole seeks to minimise overall uncertainty, Algorithm 2.

In order to test the quality of knowledge acquisition in a dynamic environment, we make the
carriers move position. This is specified with a single parameter, the aggregate mean carrier
velocity vc agg. Given ncarrier carriers, a carrier is selected at random and moved a fixed distance
of 1 m into a random location at a velocity of vc agg · ncarrier. The mean perception error of the
swarm is given by:

serror =
1

nrobotsncarrier

nrobots∑
j=1

ncarrier∑
i=1

|c(i)jest − c(i)gt| (10)

where c(i)gt is the ground truth position of a carrier, transformed into the swarm frame.

Figure 7 shows how the two movement behaviours DSA-RW and DSA-KE perform in acquiring
knowledge about the dynamic carrier environment. At zero carrier velocities, the swarm quickly
reaches low serror values, around 0.04 m. Since the position sense has injected noise of
σpsense = 0.02m, this is a reasonable lower bound. As the velocity of the carrier movement
increases, the error goes up as unobserved carriers can move further from their last known
positions.

The effectiveness of DSA-KE in improving carrier position estimation in the swarm by actively
moving to areas where knowledge is weaker, is clearly apparent. In all cases over different
numbers of carriers and different carrier velocities, we see improvement, 38% with 10 carriers
and mean velocity 0.01 ms−1. When looking at performance vs the number of carriers, we
see that DSA-RW is roughly constant, whereas DSA-KE performs extremely well with lower
numbers of carriers. The good relative performance of DSA-KE falls off at higher numbers of
carriers, so it may be that a better strategy for high carrier numbers would ensure a greater
degree of dispersion.

2.6 Discussion and conclusion

It is important to note that both DSA-KE (Knowledge Enhancement) and DSA-SF (Shape
Formation) are simple algorithms that serve to illustrate the possibilities that distributed spatial
awareness can offer for swarm algorithms. The behaviour of the GBP message passing
algorithm underlying the DSA shared reference frame is robust across parameters and the
computational cost per robot of maintaining its local factor graph is low, of the order of a few
hundred floating point operations per second, and the communications likewise is low cost,
being a few hundred bytes per second. This is within reach of even cheap microcontrollers. But
this low-cost outlay provides a rich, entirely decentralised, pseudo-global source of information
not typically available to agents within swarms.

We consider GBP to be a powerful technique to infer global knowledge within a completely
distributed paradigm, and wish to bring other items of state and knowledge within this over-
arching framework; it will be interesting to compare some more traditional swarm consensus
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Figure 7: Swarm carrier location error serror with the two robot behaviours while varying the
carrier velocity (left) and the number of carriers in the arena (right). The number
of robots is fixed at 10. Shaded areas indicate ±σ over 50 different random seeds.
As the mean carrier velocity increases, so does the error, which is expected. With
a fixed mean carrier velocity and sweeping the number of carriers, we see roughly
constant error with the random walk of DSA-RW, but much lower error with DSA-KE
as it actively seeks to enhance knowledge, particularly with low carrier numbers. In
all cases, the DSA-KE behaviour results in much lower swarm perception error.

algorithms with GBP, many best-of-n swarm algorithms rely on local message passing, perhaps
suggesting deeper similarities.

We look forward to exploring new swarm algorithm possibilities that may combine DSA ac-
quired knowledge with other swarm techniques. The current simulation system relies on
graph construction happening in synchronisation at regular timesteps, but we don’t see this
as necessary and plan to remove this restriction, e.g. by estimating between states at time of
observation. Finally, we are planning to implement the algorithm on the DOTS swarm in reality
as part of our logistics demonstration task.

3 Using awareness metrics to select optimal levels of awareness

Measuring awareness across different systems remains an unresolved challenge. Yet, we
argue that it holds untapped potential for enhancing the design, control, and effectiveness of
artificial systems. We propose a novel and tractable approach to measuring the impact of the
presence of varying degrees of awareness on system performance. Specifically, we demon-
strate this approach through a swarm robotics intralogistics scenario, where we assess the
influence of two dimensions of awareness - spatial and self - on the performance of the swarm
in a collective transport task. Our results reveal how increased abilities along these awareness
dimensions affect overall swarm efficiency. This application represents an initial step towards
quantifying and controlling awareness in artificial systems and future implementations across
different systems [6, 16].

Our focus in this research is on the practical measurability of awareness, specifically how
the presence of more or less awareness impacts performance in a collective of agents. The
emphasis here lies not on assessing or formulating the minimal conditions for awareness to
be present, but rather under the assumption that there might be some awareness present, we
focus on examining how varying the degrees of awareness along several dimensions affect
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performance. In concrete terms, this entails a functional approach to awareness, referencing
an entity’s ability to process and respond to its environment, itself, and others through various
action-perception abilities. For example, a robot might possess a degree of spatial awareness
allowing it to reliably and effectively locate and retrieve objects in space. Importantly, we
conceive of awareness as a continuous spectrum rather than a binary on/off property. Further-
more, assuming awareness cannot be captured by a single measure, it must be understood
within a multidimensional framework. By operationalizing the concept as such, we aim to
provide a practical way to evaluate and compare artificial systems [28, 35, 7].

From these motivations we draw the following aims: first, we provide a framework to measure
the changes in the behaviour or performance of an artificial swarm system based on different
dimensions of awareness [42]. Secondly, rather than approaching awareness directly we
approach it in terms of the abilities it encompasses [25]. This is in contrast to a focus primarily
on task completion for artificial systems. We therefore introduce terminology for the study
of awareness which will provide us with tools to examine awareness in a given context for
any artificial system. Finally, we demonstrate a practical implementation of the framework
in a concrete use-case for swarm robotics. In this case, a framework for the examination of
awareness may be leveraged to enhance the capabilities of the swarm to achieve certain tasks,
or to compare the design of one swarm system to another. Our framework provides a starting
point for such an application.

3.1 Levels of awareness

Here we define different concepts and terminology related to awareness that are necessary to
describe and implement our framework. Figure 9 summarises the concepts described below.

Dimensions of awareness: In proposing a multidimensional account of awareness, our
focus lies not on mapping all the things of which a system is aware, but rather on delineating
the ability space of a given system in a manner that enables comparison across different
systems. Underlying this approach is the notion that awareness cannot be captured along a
single dimension of measurement. By specifying dimensions we enable comparison between
different systems without assuming such a single linear standard, instead allowing for a more
flexible and nuanced approach to measuring awareness. This is particularly important for
assessing different artificial systems, e.g. swarms versus artificial neural networks, since they
may require highly different evaluation criteria. A multidimensional approach to measuring
awareness therefore makes meaningful comparisons across such heterogeneous systems
possible, see Figure 8.

The dimensions we focus on as an example are spatial and self-awareness. Other dimensions
which may be considered include temporal, agentive and meta-cognitive. We leave a full
exploration of these dimensions to future work, noting that this list is neither exhaustive nor
complete - additional dimensions may be identified, and existing ones may prove interrelated.

Our focus on spatial and self-awareness stems from their operational and tractable applicability
to the swarm use-case discussed here. Spatial awareness refers to a systems ability to sense
and react to its spatial environment in relation to physical locations of itself and other entities
within that environment. This might involve abilities such as navigation, localization, and
coordination of movements or actions in space. Self-awareness is explored here in its minimal
instantiation as bodily awareness, defined as a system’s ability to monitor its own physical
states. In artificial systems, this could involve the ability to detect and adapt to changes in its
structural integrity (e.g. the occurrence of faults), energy levels, or operational limits.
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Figure 8: Example awareness profiles for three different artificial systems across five
dimensions. The profiles are a visual demonstration of where each system sits in
the multi-dimensional space of awareness.

Capacities: Each dimension of awareness must be associated with an underlying set of
abilities, which we refer to here as capacities. Capacities refer to a system’s dispositional
properties to succeed in specific tasks - similar to how a person may exhibit varying levels of
skill on tasks such as pattern recognition, spatial navigation, memory retrieval, or even a game
like basketball. In other words, capacities refer to what a system is able to do, and to what
extent [23], with performance evaluated against established success conditions. Along any
given dimension, a system possesses certain capacities to varying degrees, and we expect
differences in its operation or performance to reflect these variations in capacities. Instead of
cataloging all potential capacities, we focus on a few specific capacities within the dimensions
of interest to explore how they affect system performance. In particular, we investigate whether
a system’s performance on a given task entails reliance on capacities along either of the two
dimensions of interest, posing the following key questions: to what extent does a system rely
on spatial or bodily capacities for its functioning in a given context? And how might we measure
these capacities in practice?

Mechanisms: Mechanisms are the means by which capacities are enabled in a system. For
example, in a robot, the capacity for navigation might rely on optical sensors and motors.
The same optical sensors could also support the capacity to detect and identify objects in the
environment. While mechanisms refer to the components of a system - like sensors, algorithms
or motor systems - capacities refer to what the system can do as a result, such as successfully
navigating a maze or categorizing objects. There is therefore a many-to-many relationship
between mechanisms and capacities: a single mechanism can support multiple capacities,
and a single capacity may be instantiated through various distinct or overlapping mechanisms.

Evaluation tasks: Tasks are chosen in order to evaluate the performance of the system with
respect to the set of identified capacities, which themselves are associated with the dimensions
of interest. In selecting a task, we must be able to reasonably assume that the associated
dimensions are present to some degree and necessary for the swarm to perform the task.
We can then measure the effect of disabling capacities on swarm performance as an indirect
measure of the effect of associated dimensions.

Performance metrics: We can evaluate the performance of a system for a given task using
defined metrics. The definition of such metrics will be task specific and we do not provide a
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Figure 9: Visualisation of the relations between concepts in the framework. We illustrate two
alternate perspectives for the sequence of concepts, arrows indicating the direction of
order: the pipeline evaluation starts from the performance metrics progressing from
right to left whereas the conceptual perspective progresses in the opposite direction
starting from the dimensions.

list of metrics here but assume that they come with the given tasks (to be specified by the
engineer/designer of the system). The performance on a given dimension can be compared
for a system when a capacity is present and when it is not.

3.2 Implementation pipeline

The concepts defined above and visualised in Figure 9 can now be applied to achieve our
aim: to evaluate the performance of the swarm with respect to capacities associated to the
dimensions of awareness that we wish to examine. More specifically, we are interested in
how performance in a given task changes depending on whether the capacities of interest
are present or not present. In practice, the evaluation of the above involves selecting a set
of capacities associated to the dimensions of interest, together with a task which allows for
such capacities to be evaluated with a performance delta. A single task is sufficient for the
implementation in this work. The following is a description of an implementation pipeline for
the framework in four steps:

1. The first step is to specify the capacities C of the system associated with the dimensions
D of interest. For example, for spatial awareness in a robot an associated capacity might
be the ability to detect objects. In particular, capacities are realised through mechanisms
available to the robot such as on-board cameras and IR laser sensors. It must be possible
to disable the capacities of interest in order that performance can be evaluated when they
are present and absent. To do so in practice means disabling the mechanisms on which
the capacities are dependent.

2. Following from above, an intermediate step is to identify the mechanisms through which
the capacities of interest are realised. From this point onwards, we abstract the mech-
anisms and refer only to capacities with the assumption that mechanisms exist in the
robot that may be disabled, and such that it is possible to identify the dependencies of
capacities on them.

3. A task T is selected such that we can reasonably assume that the dimensions of aware-
ness we are interested have a non-zero impact on the swarm performance. The motiva-
tion here is to select a task which provides meaningful information about how capacities
affect performance. For example, in an area-coverage task a robot may not make use of
its ability to manipulate physical objects - this capacity cannot therefore be evaluated in
such a task. We make the assumption here that there exists a task which satisfies our
requirements.
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4. Finally, performance metrics M are selected to evaluate the system with and without
the presence of each capacity for the selected task. Then, for each capacity and each
metric, the delta in performance is evaluated for the swarm performing the task. A high
positive delta in performance suggests that the capacity has a strong positive contribution
to swarm performance in the given task. We also allow for the case where a capacity may
have a negative impact on performance - our interest is focused on relative performance
when varying the capacities present.

This implementation pipeline provides us with concrete steps to realise our aims. It is defined
in a general way such that it may be applied to any swarm system and dimensions of interest.

3.3 System scenario

Definition of capacities We now have all the ingredients required to implement our frame-
work. Following the first step in the pipeline, we identify the capacities associated to the
dimensions of interest: spatial and bodily awareness. In particular, we focus on the awareness
and associated capacities for individual robots in the swarm. When enabling and disabling
capacities, we do so for every robot in the swarm. The presence or absence of capacities at the
level of the individual then produces an additive, or super-additive, impact on the overall swarm
performance. We are interested in the following capacities for each dimension of awareness:

1. For spatial awareness, we consider the capacity for robots to locate boxes in the arena.
One way in which this can be implemented is with Distributed Spatial Awareness system
described in Section 2 which allows robots in a swarm to share and update their beliefs
in a distributed manner. The accuracy of beliefs increases over time. As a proxy for
the varying capacity of robots to localise objects in a physical space, we adjust the
information available to the robot. The varying levels of “skill” a robot might have in this
regard are implemented by introducing different levels of certainty in the information they
possess. In the first level, robots know the quadrant of the arena that a box is located
in. In the second level, robots know the precise coordinates of the centre of each box.
Robots act on this information by navigating to the coordinates of the quadrant or the
box, for each level respectively. We label these capacities: knowledge of quadrant and
knowledge of box.

2. For bodily awareness, we consider the capacity of robots to self-detect and self-diagnose
the presence of a fault. Again we consider two levels: in the first, a robot is able to
self-detect the presence of a fault with a binary classification (faulty or non-faulty) without
information of the type of fault. In the second level, a robot is able to self-diagnose the
type of fault which has occurred. We note here that the second level of fault diagnosis
necessarily depends on the first level, the capacity to detect faults. Fault detection is
thus subsumed in the fault diagnosis capacity. In both cases, robots attempt to apply
mitigation actions to reduce the negative impact of a fault. In the case of diagnosis,
we assign the action to be applied depending on the diagnosed fault type: 1) a wheel
fault causing a robot to move at 10% speed is mitigated by the robot moving towards a
detected box, and 2) a lifter fault preventing a robot from picking up a box is mitigated
by a robot opting to leave any team it has joined. These actions have been shown to
be effective in mitigating the respective target faults [35]. In the case where a robot is
only able to self-detect faults without diagnosis, it will select one of the two mitigation
actions at random. The two capacities associated with bodily awareness are labelled
fault detection and fault diagnosis.
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Figure 10: Arena setup: robots are represented by circles, boxes are represented by large
orange squares. The deposit zone is the green-shaded strip at the upper boundary
of the arena.

Scenario and Task Following identification of the capacities, we select a task where the
capacities have a non-negligible impact on swarm performance. An intralogistics scenario
provides a suitable task for our purposes as successful completion depends on the robots in
the swarm having some degree of spatial and self-awareness. It is also a practical and realistic
scenario in which to apply the implementation pipeline and produce a meaningful evaluation.
In this scenario, the robots operate in a 5 m × 5 m bounded arena where they are tasked with
retrieving and delivering boxes to a designated drop-off zone. The drop-off zone is a 0.75 m
deep strip which extends along the width of the upper boundary of the arena. A robot can
detect objects such as a box, another robot, or wall, via fiducial tags. In particular, robots
perform collective transport where a team of four robots is required to transport each box. It is
assumed that one robot takes position at each corner of the box. Boxes are removed from the
arena upon successful delivery. They are also respawned every 20 s up to a limit of two boxes
being present in the arena at any given time. The total number of respawned boxes allowed in
a single trial is 20. The parameters of this scenario are selected to match the real-world robot
platform and arena available to us as closely as possible with the aim to close the reality-gap
in real-world trials. The scenario configuration is summarised in Figure 10 and Table 3.

There are four main stages of execution in the controller for collective transport behaviour.
First, robots perform a random walk in the initial stage of searching for a box. Once a box
has been found, a robot will position itself under the box if there is a free pickup spot and
wait for a complete team of four robots to form. Upon completion of the team, each robot will
independently “vote” for the next collective action: lift box, move, or deposit box. When a box is
successfully deposited, the team is disbanded and robots return to the initial stage of searching
for a box. Figure 11 shows the details of the collective transport controller.

Additionally, during real-world operation, faults will inevitably accumulate in the swarm [9, 3,
36]. We simulate the occurrence of faults by injecting faults with a given probability p = 0.002
at each timestep. There are two possible fault types: a wheel fault which causes a robot to
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Table 3: Scenario configuration

Property Value

Arena Dimensions 5 m × 5 m

Number of boxes in arena 2

Maximum boxes to respawn 20

Number of robots 10

Box size 0.7 m

Deposit zone 0.75 m deep horizontal strip along upper boundary

Robot Diameter 0.25 m

Cameras 4 x 120◦FOV video cameras equidistant on
perimeter, 1 m range, used to detect objects; 1 x
120◦FOV camera upward-facing for precise
positioning under boxes.

Proximity 16 x IR laser ToF, 3 m range, for collision avoidance

Communication Bluetooth, 1 m range

Robot max speed 2 m s−1

Figure 11: The collective transport controller: there are four main stages of execution which
are labelled in the figure.
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move at 10% of its maximum speed, and a lifter fault which results in a robot being unable to
pick up a box. The wheel fault is a partial fault where a robot is still able to aid in collective
transport whereas the lifter fault is a critical fault where a robot may cause the team to become
stuck [35]. We assume that it is equally likely for both faults to occur. We set a limit of 5 for the
total number of faults that can occur in the swarm. Given the experimental setup and swarm
controller, the performance of the swarm as a whole can therefore be seen to be dependent
on the capacities associated to spatial and bodily awareness of individual robots.

Evaluating performance We select a single performance metric for evaluation: efficiency. In
this case, we are interested in how quickly the swarm is able to retrieve and deliver boxes. We
define the performance metric as a function of the number of boxes delivered over time. For
each trial, we evaluate performance P as the integral under a step function f(t), the number of
boxes delivered at time t ∈ [0, tmax]. We have the trial duration tmax = 2000s and the maximum
possible number of boxes to deliver B = 22. We have f(t) ∈ {0, 1, ..., B}.

We are also interested in comparing performance scores across trial configurations for enabled
capacities. For the performance score for each configuration, we compare this to the baseline
performance of the swarm when there are no capacities enabled. In order to make such a
comparison, we use the Mann-Whitney U test as a measure of group difference. For each
trial we generate a sample of performance scores S. In particular we generate a sample for
the baseline trial configuration SB. Each of these samples S can then be compared to SB to
determine whether there is a large or small group difference. Group difference corresponds
to difference in performance. A small group difference indicates that the scores in S are close
to the baseline - there is little change in performance. A large difference however indicates a
large performance change. This difference may be positive or negative.

More precisely, we have:

∆P = 2h

∣∣∣∣ U

n1n2
− 0.5

∣∣∣∣ (11)

h =


1, if R > RB

0, if R = RB

−1,otherwise
(12)

where ∆P is the group difference (or change in performance) and U is the test statistic when
comparing sample S to baseline SB, and n1, n2 are the corresponding sample sizes. Variable
h takes into account the directionality of group difference by comparing the rank totals for the
two samples. Rank totals for each sample, R and RB, are produced by ranking the sample
data in aggregate. ∆P sits in the range of [−1, 1].

3.4 Simulation results

Given the two capacities we have identified and their two levels of “skill”, we systematically
enable each level of capacity independently and evaluate the resulting swarm performance for
our selected metric. Additionally, we evaluate combinations of capacities and their levels which
has equivalence to interactions between dimensions of awareness. The resulting performance
is compared to the baseline performance where all capacities at all levels are disabled, using
the measure of group difference ∆P as defined in equation 11.

Considering all possible combinations of independent variables, we have a total number of 9
trial configurations. For each trial configuration, a total of 100 trials are run where the initial
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Figure 12: Performance scores for each configuration of capacities present in the swarm. The
outliers are not plotted and scores are normalised for the range of minimum score
(0) and the maximum score attained across all trials.

Table 4: Performance change with respect to baseline. An asterisk indicates a combination of
capacities.

Enabled capacity ∆P (2 d.p.)

Fault detection -0.26

Box + detection* -0.01

Quadrant + detection* 0.04

Fault diagnosis 0.09

Box + diagnosis* 0.12

Knowledge of quadrant 0.13

Knowledge of box 0.24

Quadrant + diagnosis* 0.27
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positions of boxes and robots are randomised. The performance scores are normalised over
a range of minimum and maximum performance. Minimum performance is assumed to be 0
corresponding to complete failure of the swarm to deliver any boxes. Maximum performance is
selected as the maximum performance score from all trials.

Figure 12 shows the performance scores across the batch of trials for each configuration
of enabled capacities. The distribution of scores shows high variance with left skew. High
variance results from the stochasticity in the collective transport controller - box delivery is
dependent on the speed of team formation which is highly variable. There is a noticeable
difference in performance across enabled capacities however. Table 4 shows the performance
change for each enabled configuration of capacities when compared to baseline performance,
in ascending order. Notably, enabling the capacity for fault detection has a substantial negative
impact on swarm performance compared to the baseline with no capacities enabled. Our
approach allows for the possibility that a capacity may not necessarily have a positive change
on performance.

When considering each dimension of awareness independently, the associated capacities
with largest performance change are knowledge of box location (spatial awareness) and fault
diagnosis (bodily awareness). This is an intuitive result since in both cases, these are the
capacities with the highest level of information available in our experimental setup. Since the
capacities associated with spatial awareness have larger performance change compared to
those associated with bodily awareness, this suggests that for this particular task and experi-
mental setup, spatial awareness may be more critical to efficiency of the swarm. Combinations
of capacities generally have small performance change. However, the largest performance
change is produced by enabling the combination of knowledge of the box quadrant and fault
diagnosis. This result is somewhat surprising, given that knowledge of box location has the
largest performance change for spatial awareness independently. This demonstrates that
combinations of capacities may produce results which are more, or in some cases less, than
the sum of their parts.

3.5 Discussion and conclusion

We have presented a practical application of a framework for evaluating the effect that aware-
ness has, through associated capacities, on the performance of artificial agents in a given
task. We have introduced terminology for the concepts related to awareness together with the
relations between them, which form the structure of an implementation pipeline for application.
In particular, we have demonstrated an example implementation for a robot swarm in an
intralogistics scenario, examining two dimensions of awareness: spatial and bodily awareness.
We have shown that our approach is able to provide insights into how various capacities
(associated with the dimensions of interest) impact swarm performance for the chosen per-
formance metric: efficiency of the swarm. We are also able to compare how the capacities
associated with each dimension impact swarm performance and how to control awareness
for desired performance. In the example implementation, the results suggest that capacities
associated with spatial awareness have low or negative impact on swarm performance when
considered independently, compared to the capacities associated with bodily awareness which
have positive impact on performance.

Beyond implementation in a single system, the proposed framework is designed to enable
comparisons to be made between various artificial systems, along various dimensions of
awareness. The strength of the framework lies in its flexibility which is two-fold: first, the
association of capacities to dimensions and the freedom to choose relevant tasks allows
great flexibility in its application to various systems, making it possible to perform inter-system
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comparisons. Secondly, as seen in the example implementation presented, there is flexibility in
the comparisons one can make within a single system - we can choose to compare capacities
along a single dimension, or even across multiple dimensions, or combinations of capacities
equivalent to interactions of dimensions. The power therefore lies with the user to apply the
framework according to the desired point of comparison. At its core, the framework draws
relations and dependencies between the concepts defined, making the challenge of examining
awareness tractable from a system designer’s perspective.

Measuring awareness is critical to understand, and design for it. The different dimensions of
awareness implemented in a system have the potential to improve the performance of the
system. Another potential benefit would be improved interfacing with society by enabling
increased control, and better understanding and evaluation with respect to ethical consider-
ations. Without proper evaluations of the abilities of artificial systems we cannot rely upon
them and collaborate with them in our daily lives ethically. In this work we present a framework
to assess the performance gain provided by different dimensions of awareness, and apply
the framework to an intralogistics use-case for a robot swarm. In the future we will apply this
framework to both quantify awareness in artificial systems, and evolve solutions of systems
based on awareness requirements. As a first step we provide an example implementation of
the framework with a view to future implementation across artificial systems, and demonstrate
the power of the framework in making tractable the challenge of examining awareness.

4 Control of emergence of awareness

EMERGE outlines a roadmap for designing collaborative systems that leverage emergent
awareness for self-regulation and interoperability between individuals. We have demonstrated
that equipping individuals with specific system capacities serves as a proxy for regulating and
controlling their degree of awareness, expressed across a set of dimensions. Here, we define
control as the ability of a designer—whether human or computational—to set preferences
(either offline or online) that influence the collective behaviour and the potential for awareness
of a distributed system. In this context, the strategic selection, control, and optimization
of system capacities enable or constrain the space of behaviours the collective can exhibit.
Therefore, we explore how automatic design methods—e.g., those based on artificial evolution
and similar optimization processes—can drive this selection process to regulate and control
the emergent awareness of a collective system.

We focus on controlling individuals’ capacity to communicate. As outlined in WP1 of EMERGE,
communication is the primary enabler of collective awareness. Individuals capable of selecting
and sharing information about their state and environment contribute to this awareness. Com-
munication is the first step toward higher degrees of collaborative awareness: coordination and
cooperation. It facilitates the transition from coexisting individuals to systems where strategic
information sharing triggers informed collective actions.

4.1 Automatic design of communication strategies in minimal agents

EMERGE considers a set of use cases (soft robots, robot swarms, and cobots) with which to
investigate the regulation of emergent awareness capacities through the selection and control
of communication mechanisms. We experiment with robot swarms, whose loosely coupled
nature supports varying degrees of communication and allows for continuous reconfiguration
at runtime—while still enabling diverse collective behaviours.
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We focus on agents that, a priori, have no predefined shared language and have constrained
individual capabilities. With this system, we explore how automatic design processes—the
superclass for the application of evolutionary strategies for programming robots—can select
appropriate communication mechanisms. In line with the EMERGE vision, our goal is not
to develop a universal communication protocol for coordinating agent collectives. Instead, we
aim to create automatic design methods capable of generating domain-specific communication
strategies tailored to specific tasks.

The literature in swarm robotics extensively exemplifies the communication between minimal
agents, in many cases drawing inspiration from mechanisms found in biological systems.
Direct communication and stigmergy are two key mechanisms that enable coordination and
cooperation in robot swarms. Direct communication requires robots to be within communication
range to exchange information synchronously. Stigmergy, on the contrary, is an indirect form of
communication in which robots modify their environment to leave information traces that others
can interpret, without a need for synchrony.

Previous work has demonstrated that automatic design can generate coordination strategies
using either direct communication [19] or stigmergy [53]. Here, we present results showing that
an automatic method can also select between these two mechanisms within a single design
process. Therefore, it is a suitable method to design domain-specific communication strategies.

We investigate scenarios in which a robot swarm can use environmental cues and inter-robot
signalling to perform its mission more effectively. We conduct simulation experiments with a
swarm of robots that address aggregation, homing, and task allocation problems—each requir-
ing domain-specific communication strategies. Robots coordinate via stigmergy by releasing
artificial pheromones into the environment or through direct communication by signalling with
LEDs, both perceived by onboard cameras The automatic design process selects between
these two mechanisms to generate collective behaviours for the task at hand.

The results show that the automatically designed robot swarms operate with communication
strategies that leverage either mechanism in a mission-specific way. We observed that when
appropriate environmental cues are missing, or when the swarm cannot effectively use them,
the design process automatically compensates by relying on communication.

The automatic design of communication strategies can potentially facilitate interfacing robot
swarms with external systems. We investigate the selection of communication mechanisms
as a step toward enabling interoperability, coordination, and cooperation within the EMERGE
heterogeneous robotics framework [14].

4.1.1 Direct communication

In swarm robotics, direct communication—where robots explicitly exchange signals—plays a
crucial role in enabling coordination, cooperation, and self-regulation. A widely used mech-
anism to achieve direct communication with robot swarms is colour-based communication,
where robots actively display and perceive colours to coordinate their actions.

Colour lights are commonly used to encode and transmit domain-specific information in swarm
robotics. The nature of this information varies from one study to another and it often designed
ad hoc to achieve particular behaviours. For example, researchers have designed swarms
that connect locations of interest by establishing a chain of robots that act as waypoints for
their peers [46]. Robots repeat a pattern of three colours along the chain to indicate the
direction in which the peers should move. Using the same mechanism, but with a different
purpose, researchers have also designed swarms in which robots self-assemble in mergeable
structures by physically connecting to each other [40]. In their experiments, robots display

31



Funded by the European Union under Grant Agreement 101070918. Views and opinions expressed are however those of the author(s)
only and do not necessarily reflect those of the European Union or European Innovation Council and SMEs Executive Agency (EISMEA).
Neither the European Union nor the granting authority can be held responsible for them.

WP5 Emergent awareness - Collective understanding and control of multi-agent systems
D5.2 Emergent Awareness Control

colours to indicate whether it is expected that other individuals join the structure and in which
position they should do so.

More broadly, direct colour-based communication has been employed in various swarm be-
haviours, including fault detection [11, 40], transport [47, 15], human-swarm interaction [21,
50], clustering [1, 49], and foraging [5]. In these studies, communication strategies were
manually designed based on domain-specific knowledge. To control the emergence of a
given collective behaviour, ad hoc relationships were established between the colours a robot
perceives and the corresponding behaviours it should adopt.

It has been demonstrated that automatic design processes can establish domain-specific com-
munication protocols for robot swarms [19]. Given a set of possible communication channels
(e.g., a range of colours to encode information), the automatic process simultaneously gener-
ates the control software required for robot operation and designs an appropriate communica-
tion strategy to be leveraged. This presents an opportunity to regulate emergent awareness
through automatic design methods. The designer of system with collective awareness can
enable or restrict communication capabilities—granting robots more or less capacity for in-
formation sharing—and, in doing so, directly influence the potential for emergent awareness
within the collective. However, this constraint does not prevent the automatic design process
from optimizing collective behaviour; rather, it defines the extent of awareness that can emerge
based on the available communication mechanisms.

Direct communication via colour lights is a practical mechanism applicable in minimalistic
physical robots. It is platform-independent, as most swarm robotics platforms include LEDs
and cameras [45], and it facilitates the implementation of complex missions by allowing flexible
environmental colour encoding [19, 8, 57]. While other modalities, such as infrared [24] or
sound [59], have been explored, colour-based communication offer the distinct advantage
of facilitating visualization and monitoring—allowing for human interpretability of the swarm
behaviours [45, 33].

4.1.2 Indirect communication (Stigmergy)

Stigmergy is a coordination mechanism in which agents self-organize through indirect com-
munication mediated by the environment [22, 26]. In swarm robotics, it enables asynchronous
interactions, where robots modify their environment to leave cues that others can perceive
and respond to. Similar to direct communication, regulating how and when information is
encoded in the environment influences how robots coordinate, adapt, and respond to dynamic
conditions. Within the EMERGE framework, stigmergy serves as a communication mechanism
that can be operationalized to either enable or constrain a system’s potential for emergent
awareness by modulating the flow of information within the collective.

A common way to study stigmergy in swarm robotics is through pheromone-based behaviours,
which mimic the communication strategies of social insects. For example, ants leave chemical
trails—i.e., pheromones—that influence the behaviour of their peers. Similarly, robot swarms
can use pheromone-based stigmergy if they are equipped with mechanisms to artificially re-
lease and perceive pheromones [54]. The automatic design of pheromone-based stigmergy
has been recently demonstrated in robot swarms [53, 54]. This research features collectives
of robots that project UV light onto a ground surface coated with photochromic material. When
exposed to UV light, the material changes colour from white to magenta and gradually fades
back within approximately 50 seconds, mimicking the evaporation of chemical pheromones.

Designing stigmergy-based behaviours remains a significant challenge [27]. Unlike direct
communication, which allows robots to explicitly exchange signals (e.g., via color lights), stig-
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mergy relies on environmental modifications that indirectly shape future interactions. This
makes the design process less intuitive and more dependent on emergent dynamics. The
design pheromone-based communication requires careful tuning of pheromone deposition,
evaporation rates, and robot responses to environmental cues. As with direct communica-
tion strategies, most implementations of pheromone-based stigmergy rely on manual design
tailored to specific missions. This also presents an opportunity to leverage stigmergy as
a communication mechanism that can be regulated through automatic design processes to
enable or constrain the potential for emergent awareness.

4.1.3 Automatic Modular Design (AutoMoDe)

AutoMoDe, short for Automatic Modular Design [17], is an approach to the design of control
software for robot swarms. AutoMoDe methods produce control software for robots by tuning
and assembling predefined software modules into a modular control architecture. This process
is driven by an optimization algorithm that uses mission-specific performance metrics to search
for suitable control software for the robots.

AutoMoDe is a general approach to designing collective behaviours for robot swarms that
is characterized by four key components. First, the class of problems that the method is
intended to address, including general mission requirements and common environmental fea-
tures across missions. Second, the robot platform for which the control software will be
designed, comprising both the hardware of the robot and the control interface available to
operate it. Third, the control architecture used to produce the control software, which considers
both the predefined software modules and the architecture into which they can be assembled.
Fourth, the optimization strategy that drives the design process by selecting and refining control
software instances with respect to a mission-specific performance measure.

We use AutoMoDe to investigate how an optimization-driven design process can select com-
munication mechanisms for robot swarms in a domain-specific way. As discussed in previ-
ous sections, the choice between communication mechanisms serves as a means to con-
trol the potential for emergent awareness within the system—this is our class of problems.
Specifically, we explore AutoMoDe’s ability to leverage direct communication or stigmergy to
design good performing control software for the robots, leveraging the capacities that each
mechanism can enable. To evaluate this automatic design process, we conceived simulation
experiments where both direct communication and stigmergy are viable solutions, yet their
selection and implementation directly influence overall system performance. In these exper-
iments, AutoMoDe is used to simultaneously (i) design the collective behaviours required for
a given mission, (ii) select the most effective communication mechanism, and (iii) develop
a communication protocol that drives robot interactions. To implement this approach, we
adapt two methods from the AutoMoDe family, each designed for missions requiring specific
communication strategies: AutoMoDe-TuttiFrutti [19], which targets direct communication,
and AutoMoDe-Habanero [53], which focuses on stigmergy. We integrate the algorithms of
both methods into a single process capable of selecting between the two, allowing AutoMoDe
to autonomously operationalize the most suitable communication mechanism for a given task.

In the following sections, we describe the robot platform used in the experiments and its capa-
bilities, the modular control software on which AutoMoDe operates, and the design process for
selecting communication mechanisms and developing the collective behaviour of the robots.

Robot platform and simulator

We consider a simulated version of the e-puck robot [43, 18]—see Figure 13. Simulations are
performed in ARGoS3 [48], version beta 48, together with the argos3-epuck library [18].
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Figure 13: The e-puck robot considered in the experiments, along with its sensors and
actuators. The picture shows the simulated version of the physical robot.

The sensors and actuators of the robot, along with their corresponding inputs and outputs in
the control software, are listed in Table 5. The e-puck has eight proximity sensors (prox i)
distributed around its chassis to detect nearby obstacles. Three infrared ground sensors
(gnd j) allow it to differentiate between black, gray, and white surfaces. An omnidirectional
vision turret detects red, green, cyan, magenta signals (camc) within a 360◦ field of view
and a 0.5 m range. The camera’s field of view (fov ) can be adjusted to narrow ( 1

12π) or
omnidirectional (2π) perception. For each detected colour, a unit vector (Vc) represents the
relative aggregate position of robots or objects displaying that colour. The control software
adjusts wheel velocities (vk) between -0.12 and 0.12 m/s. The RGB LEDs on top of the e-puck
can display cyan or remain off. For stigmergy-based communication, the e-puck is equipped
with hardware to lay and detect artificial pheromones. The control software controls UV LEDs
(phe) on the lower body to project magenta pheromone trails (trail ), or none (∅).

Modular control architecture

AutoMoDe assembles predefined software modules into probabilistic finite-state machines.
The set of modules in TuttiFrutti comprise six low-level behaviours—the actions that a
robot can take, and seven transition conditions—the events that trigger the transition between
low-level behaviours. These modules provide the e-puck different ways of interacting with
robots and objects that display colours and with the pheromone trails. Table 6 lists AutoMoDe’s
low-level behaviours and transition conditions.

Low-level behaviours: TuttiFrutti and Habanero low-level behaviours are identical in all
aspects except for the mechanism they use to enable communication between robots. In
EXPLORATION, the robot moves straight until it detects an obstacle in front with its proximity
sensors (prox i). It then rotates for a number of control cycles defined by the integer parameter
τ , where τ ∈ {0, . . . , 100}. STOP sets the robot to a standstill behaviour. COLOR-FOLLOWING

and COLOR-ELUSION control movement based on visual input. In COLOR-FOLLOWING, the
robot moves toward (Vc). In COLOR-ELUSION, it moves away from (−Vc). Signals from other
robots are associated to the colours δ ∈ {C,M}—cyan on RGB LEDs for direct communication
and magenta in pheromone trails for stigmergy. Other objects in the environment, such as
the walls of the experimental arena, can display the same colours along with two additional
ones, δ ∈ {R,G,C,M}. ATTRACTION, REPULSION, COLOR-FOLLOWING, and COLOR-ELUSION

incorporate physics-based obstacle avoidance [4]. In TuttiFrutti’s low-level behaviours,
the parameter γ ∈ {∅, C} determines whether the RGB LEDs display cyan as a signalling
mechanism. In Habanero’s low-level behaviours, the parameter phe ∈ {∅, trail} determines
whether the UV LEDs activate to leave a magenta trail as a signalling mechanism. The
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Table 5: The control interface for the e-puck. The robot can perceive: red (R); green (G);
cyan (C); and magenta (M). The robot can display no colour (∅) or cyan (C) with
its top RGB LEDs and can also set its lower-body UV LEDs to project: no pheromone
trail (∅); or a magenta one (trail). Vc is calculated by aggregating the positions of
perceived colour signals into a unique vector.

Input Value Description

prox i∈{1,...,8} [0, 1] reading of proximity sensor i

gnd j∈{1,...,3} {black , gray ,white} reading of ground sensor j

fov { 1
12
π, 2π} camera field of view

camc∈{R,G,C,M} {yes,no} colours perceived

Vc∈{R,G,C,M} (1.0; [0, 2]π rad) their relative aggregate direction

Output Value Description

vk∈{l,r} [−0.12, 0.12]m s−1 target linear wheel velocity

LEDs {∅, C} colour displayed by the LEDs

phe {∅, trail} projection of UV lights

Period of the control cycle: 0.1 s.

parameters τ , δ, γ, and phe are tuned by the automatic design process.

Transition conditions: BLACK-FLOOR, GRAY-FLOOR, and WHITE-FLOOR trigger a transition
when the robot steps on a floor region (gnd j) that is black, gray, or white, respectively. The
probability of transitioning is determined by the parameter β ∈ [0, 1]. FIXED-PROBABILITY

triggers a transition with a fixed probability β ∈ [0, 1], without any additional conditions. COLOR-
DETECTION is based on the colours perceived by the robot (camc). A transition occurs with
probability β ∈ [0, 1], triggered by a specific colour δ ∈ {R,G,C,M}. Robots in the swarm can
activate signalling mechanisms with δ ∈ {C,M}—cyan on RGB LEDs for direct communication
and magenta in pheromone trails for stigmergy. Other objects in the environment, such as the
walls of the experimental arena, can display the same colours along with two additional ones,
δ ∈ {R,G,C,M}. The parameters β and δ are tuned by the automatic design process.

Selection of communication mechanisms via automatic design

As mentioned in previous sections, our aim is to use AutoMoDe to simultaneously (i) design
the collective behaviours required for a given mission, (ii) select the most effective communica-
tion mechanism, and (iii) develop a mission-specific communication protocol that drives robot
interactions.

AutoMoDe conducts an optimization process to identify a combination of modules and pa-
rameters that maximize swarm performance based on a mission-specific metric. The control
software is structured as a probabilistic finite-state machine, limited to four states (low-level
behaviours) and four outgoing transitions per state. Transitions always occur between different
states, and self-transitions are not permitted.

The modules and their parameters are selected off-line through an optimization process con-
ducted with Iterated F-race [39]. Iterated F-race is an optimization algorithm that explores
the design space to find control software configurations suited for the mission at hand. The
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Table 6: AutoMoDe’s software modules. The modules are defined according the control interface of
the e-puck robot e-puck robot, see Table 5. TuttiFrutti ’s low-level behaviours enable direct
communication using RGB LEDs, where robots perceive each other through the cyan light
emitted by their LEDs. Habanero ’s low-level behaviours use stigmergy, where robots do
not perceive each other directly but instead react to the magenta pheromone trails they lay.
In both cases, the distinction lies solely in the colour to which robots respond; there is no
algorithmic difference in the software modules. The transition conditions remain the same for
both communication mechanisms.

TuttiFrutti’s behaviour* Parameter Description

EXPLORATION {τ, γ} movement by random walk

STOP {γ} standstill state

COLOR-FOLLOWING {δ, γ, fov} steady movement towards robots/objects of color δ

COLOR-ELUSION {δ, γ, fov} steady movement away from robots/objects of color δ

WAGGLE {γ} in-place waggle motion

Habanero’s behaviour** Parameter Description

EXPLORATION {τ, phe} movement by random walk

STOP {phe} standstill state

COLOR-FOLLOWING {δ, phe, fov} steady movement towards trails/objects of color δ

COLOR-ELUSION {δ, phe, fov} steady movement away from trails/objects of color δ

WAGGLE {phe} in-place waggle motion

Transition condition Parameter Description

BLACK-FLOOR {β} black floor beneath the robot

GRAY-FLOOR {β} gray floor beneath the robot

WHITE-FLOOR {β} white floor beneath the robot

FIXED-PROBABILITY {β} transition with a fixed probability

COLOR-DETECTION {δ, fov , β} robots/objects/trails of color δ perceived

TRAIL-DETECTION {fov , β} pheromone trail perceived

* TuttiFrutti’s low-level behaviors can set the RGB LEDs (γ ∈ {∅, C}) alongside the action described.

** Habanero’s low-level behaviors can set the UV LEDs (phe ∈ {∅, trail}) alongside the action described.

Modules that use the camera can set its field of view (fov ) alongside the action described.
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performance of the configurations is estimated through simulations performed in ARGoS3 [48],
version beta 48, together with the argos3-epuck library [18]. The duration of the optimization
process is determined by a predefined simulations budget. Once the budget is exhausted, the
design process ends and AutoMoDe returns the best configuration found.

In typical AutoMoDe setups, TuttiFrutti and Habanero are used independently, each tar-
geting a specific class of problems. TuttiFrutti is applied to missions that require direct
communication, while Habanero is used for missions that rely on stigmergy. However, within
the EMERGE framework, we propose a setup where AutoMoDe autonomously selects the
appropriate communication mechanism rather than relying on predefined choices. Instead of
prescribing a priori whether direct communication or stigmergy is needed, AutoMoDe identifies
the most suitable mechanism for the mission at hand.

To achieve our goal, we structure the design space so that the optimization process converges
to combinations of modules from either TuttiFrutti or Habanero. This is implemented by
partitioning and constraining the parameter space with dependent parameters—see [39] for de-
tails. In this design process, Iterated F-race operates over a super-parameter that determines
whether direct communication or stigmergy will be used. Based on this choice, it then enables
and tunes the corresponding set of software modules to design the collective behaviour of the
robots. This selection process is what allows AutoMoDe to control how robots communicate to
complete their mission.

Rather than relying on human expertise to define the communication-related potential for emer-
gent awareness, we leverage the systematic and performance-driven nature of AutoMoDe’s
optimization process. AutoMoDe is free to select a communication mechanism and devise
an effective way to use it based on the mission requirements. Specifically, it has freedom to
automatically generate a domain-specific communication protocol for the robots.

4.2 Experiments

We conduct experiments with e-puck robots that must perform missions in which environmental
signals, expressed as colours in the walls of the arena, provide relevant information to the
swarm. We consider three missions: HOMING, AGGREGATION, and TASKING. For each of them,
we propose two scenarios—each posing challenges on the way use and share environmental
information to perform the mission. The time available to the robots to perform a mission is
always T = 120 s. The performance of the swarm is evaluated according to a mission-specific
objective function, which we keep unmodified for their corresponding two scenarios.

The three missions are adaptations we make from equivalent missions proposed in the lit-
erature [19, 54, 53] to study AutoMoDe. We select these missions because we conjecture
that, to successfully perform them, AutoMoDe operationalise the two available mechanisms in
different ways. We challenge the design process to design robot swarms that operate under
varying persistence of environmental information, robot availability for information sharing, and
interference in communication channels.

Protocol: For each mission and scenario, we conduct 10 independent design processes
with AutoMoDe, resulting in 60 instances of control software—10 per scenario and mission.
AutoMoDe is allocated a budget of 100 000 simulation runs to generate each control software
instance. The design process and assessment are performed in ARGoS3. To evaluate the
effectiveness of the produced control software, each instance is tested 10 times in simulation
using different random seeds, which define a random initial positioning for the robots at the start
of the mission. We report the assessment with box-plots that show the empirical distribution of
performance obtained for each instance of control software produced in the experiments. For
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each instance, we identify whether AutoMoDe selected direct communication or stigmergy as
the mechanism to enable the coordination between robots.

In the following, we provide the specifications for each mission and comment on the experi-
mental results.

4.2.1 Persistency of information

HOMING mission: The swarm comprises 16 robots. The robots must reach the red corner of
the arena and remain there until the mission ends. The homing region is the square portion of
the arena enclosed by red walls. The swarm’s score is based on the total time robots spend
inside this region, given by the function fAG =

∑T
t=1

∑N
i=1 Ii(t), which must be maximized.

Here, N is the number of robots, and T is the mission duration. The indicator function Ii(t)
equals 1 if robot i is inside the red corner at time t, and 0 otherwise. The performance is
measured at every simulation step (∆t = 0.1 s).

In Scenario 1, the environmental signal (i.e., the colour of the corner) remains visible for the
entire mission (100% of the time). In Scenario 2, the environmental signal is visible for only
20% of the mission time, after which the red LEDs are switched off. The two scenarios differ
in the persistence of information availability. In Scenario 2, robots must quickly locate and
propagate information about the homing region before it disappears. This creates a difference
in the urgency with which environmental information must be detected and shared within the
swarm.

Figure 14 shows the arena for HOMING and the experimental results.

Results: AutoMoDe successfully designed control software that enabled the robots to reach
and remain in the red corner of the arena. The selection of the communication mechanism and
the strategy used to complete the mission varied between the two scenarios. This indicates that
AutoMoDe designed collective behaviours that leveraged communication in a domain-specific
way. In Scenario 1, AutoMoDe converged to solutions that relied on direct communication in 7
out of 10 runs. In Scenario 2, AutoMoDe instead generated solutions based on stigmergy in 7
out of 10 runs. The performance range remained similar in both cases. This suggests that the
optimization process effectively adapted to different communication strategies, finding suitable
solutions for each scenario without sacrificing performance.

In Scenario 1, the most common strategy is direct communication. A robot that finds the red
corner moves toward it while activating its cyan LEDs to signal its state. Other robots, even
if they do not see the red corner, follow the cyan signal toward it. Since the red lights persist
throughout the mission, robots can rely on this environmental cue to stay in place.

In Scenario 2, the red signal disappears after 20% of the mission duration. Direct communica-
tion alone is insufficient, as robots cannot rely on continuous environmental cues to remain
in place. Instead, the most common strategy is stigmergy. A robot that reaches the red
corner drops magenta pheromones, attracting others to the same location. When the red
lights disappear, the pheromone trail remains, allowing the swarm to stay in the designated
region.

4.2.2 Density of information sharing

TASKING mission: The robots must service 16 workstations located in the arena. Workstations
are indicated by gray floor patches and wall segments displaying green. A task in a workstation
is completed when a robot enters a workstation and remains there for 4 seconds. The swarm’s
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Scenario 1 Scenario 2

Figure 14: Experiments on persistency of information. Demonstrative swarm behaviours and
experimental results for the mission HOMING. Columns suffixed ‘TT’ denote controllers
using direct communication, and those suffixed ‘HB’ stigmergic communication.

score is based on the number of unique workstations serviced, with a penalty for repeated
visits. The score is given by the function fTS = w(T ) − wrep(T ), which must be maximized.
Here, T represents the mission duration, w(T ) is the number of distinct workstations serviced,
and wrep is the number of repeated services.

In Scenario 1, the swarm consists of 16 robots, which must service the 16 workstations.
In Scenario 2, the swarm consists of 3 robots, servicing the same 16 workstations. Auto-
MoDe must design a collective behaviour that maximizes the service capability, adapting in a
domain-specific way to the constraints imposed by swarm size. The robot density affects how
information is shared, introducing different communication requirements. In sparse conditions,
robots might need to rely more on long-term information propagation, while in denser settings,
local communication could suffice.

Figure 15 shows the arena for TASKING and the experimental results.

Results: AutoMoDe successfully designed control software that enabled the robots to col-
lectively service the workstations. As in the first mission, the selection of the communication
mechanism and the strategy used to complete the task varied between the two scenarios.
This demonstrates that AutoMoDe leveraged communication in a domain-specific way. In
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Scenario 1 Scenario 2

Figure 15: Experiments on the density of information sharing. Demonstrative swarm behaviours and
experimental results for the mission TASKING. Columns suffixed ‘TT’ denote controllers
using direct communication, and those suffixed ‘HB’ stigmergic communication.

Scenario 1, AutoMoDe converged to solutions relying on direct communication in 8 out of
10 runs. In Scenario 2, it exclusively generated solutions based on stigmergy in 10 out
of 10 runs. Unlike the first mission, here we observe a more evident pattern/advantage in
the selection of a specific communication mechanism for each scenario. The performance
range differed, which was expected due to the change in the number of robots from 16 to 3.
Notably, in Scenario 2, the swarm of three robots achieved scores close to the maximum (16
workstations serviced), showing that the optimization process effectively leveraged stigmergy
to compensate for the low robot count. In Scenario 1, even with 16 robots, the swarm did
not always succeed in servicing all 16 workstations, suggesting that task redundancy and
congestion limited performance despite the larger team size.

In Scenario 1, the most common strategy is direct communication. Robots approach the
workstations by following the green lights. Once they arrive, they activate their cyan LEDs.
Passing robots detect the cyan signal and are repelled, preventing them from entering an
already serviced workstation. This allows the 16 robots to ensure that each workstation is
serviced only once. Robots that have already occupied a workstation remain there, acting as
memory units to indicate completion. In this scenario, direct communication is sufficient, as
the swarm can rely on physical presence to track serviced workstations.
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In Scenario 2, fewer robots are available, making it impossible to station one at each work-
station. As a result, direct communication alone is insufficient. Instead, the most common
strategy is stigmergy. Robots still approach workstations by following the green walls but do
not remain there. Instead, they lay pheromone trails to indicate that a workstation has been
serviced, then return to search for others. The pheromone signal persists even after the robot
has left, allowing the swarm to track serviced workstations without requiring a robot to stay in
place. This strategy enables the sparse swarm to efficiently coordinate task allocation through
environmental memory.

4.2.3 Interference in communication channels

AGGREGATION mission: The swarm comprises 16 robots. The robots must approach one
another, form a cluster, and remain close until the mission ends. At the start of each run,
they are randomly positioned in the arena. The swarm’s score is calculated as the average
distance between robots, given by the function fAG =

∑T
t=1 davg(t), which must be minimized.

At each time step t, the average inter-robot distance davg is added to fAG. The performance is
measured at every simulation step (∆t = 0.1 s).

In Scenario 1, the swarm has available a single environmental signal—a cyan corner—indicating
a possible aggregation site in the arena, which robots may choose to disregard. In Scenario
2, the swarm has available two environmental signals—two cyan corners, each suggesting a
different, distant aggregation site. Robots can also choose to ignore these signals. The walls
in the corners display cyan, the same colour used by robots for direct communication. This
introduces interference between the signal provided by the environment and the signal related
to one of the possible communication channels of the robots.

Figure 16 shows the arena for AGGREGATION and the experimental results.

Results: AutoMoDe successfully designed control software that enabled the robots to aggre-
gate in the arena. As in the other two missions, the selection of the communication mechanism
and strategy used to complete the task varied between scenarios. AutoMoDe leveraged com-
munication in a domain-specific way, adapting to each environment. In Scenario 1, AutoMoDe
converged to direct communication in 10 out of 10 runs. In Scenario 2, it exclusively generated
stigmergy-based solutions in 10 out of 10 runs. There is therefore a clear pattern in the
selection of communication mechanisms to perform each scenario. The performance range
differed between the two cases.

In Scenario 1, the common strategy is direct communication. Robots activate their cyan
LEDs to signal their presence and follow the same signal to move toward each other. The
environment also displays a cyan signal, which could interfere with communication by making
robots mistake arena walls for other robots. However, since the cyan signal is in a single
location, it does not disrupt behaviour. Instead, it serves as a reference point for aggregation,
allowing the swarm to converge quickly without negative effects on communication.

In Scenario 2, using the same strategy risks swarm fragmentation. The cyan environmental
signal appears in two locations, and robots that mistake the walls for other robots may aggre-
gate in separate areas, splitting the swarm. This is a negative effect caused by the interference
in its communication channel. To counteract interference, the optimization process converges
on a stigmergy-based strategy. Robots use pheromones to establish a single aggregation point
and ignore the cyan environmental cues. This approach is slower and less precise but keeps
the swarm together and prevents fragmentation, even at the cost of lower overall performance.
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Scenario 1 Scenario 2

Figure 16: Experiments on interference in communication channels. Demonstrative swarm behaviours
and experimental results for the mission AGGREGATION. Columns suffixed ‘TT’ denote
controllers using direct communication, and those suffixed ‘HB’ stigmergic communication.

4.3 Discussion and conclusion

Experimental results demonstrate that automatic design is an effective approach for the se-
lection, control, and optimization of communication mechanisms in robot swarms. In each
mission and experimental scenario, AutoMoDe successfully identified suitable communication
protocols, enabling interaction through direct communication and stigmergy. The signaling
mechanisms available in AutoMoDe’s modules—activating or deactivating the RGB LEDs or
UV LEDs—had no predefined meaning for the missions. Despite this, AutoMoDe discovered
domain-specific protocols, assigning mission-specific semantics to these mechanisms. For
example, in AGGREGATION, pheromone trails signalled ”come here”, while in TASKING, they
indicated ”avoid this workstation”. The results highlight the potential of optimization methods,
such as the one used here or artificial evolution, in exploring and tailoring the capacities of
minimal individuals. The automatic nature of the process allows for the discovery of how these
mechanisms can be exploited, enabling emergent self-regulation and interoperability among
robots.

In our experiments, a designer—a human supported by a computational optimization process—
set preferences that ultimately controlled/regulated how awareness would resolve in the robot
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swarm. These preferences included a mission-specific performance metric and a set of com-
munication mechanisms available to the robots. The strategic selection, control, and optimiza-
tion of mechanisms—such as those described in WP1—showed to be suitable to enable or
constrain the capacities of the collective. For example, if stigmergy had been manually disabled
in the design process, the swarm would have lost its ability to retain memory and remain
collectively aware of serviced workstations, particularly when operating with few individuals.
In this sense, choosing which mechanisms are available during design enables or disables
specific capacities in the swarm. This, in turn, regulates its potential for emergent awareness.
While manual selection based on external expertise can achieve this control, it limits the ability
to fully exploit awareness for optimized system performance. Bias and misconceptions may
also be introduced if certain mechanisms or capacities are assumed to be favourable for a
given mission—as seen in the fault detection experiments—potentially overlooking alternative,
more effective solutions. Instead, within the EMERGE framework, we advocate for an auto-
mated selection process. By allowing the design process to autonomously choose the system
configuration, we ensure that awareness capacities are not preconditioned but rather optimized
for performance based on the task at hand.

These experiments represent a step forward toward achieving higher levels of collaborative
awareness: coordination and cooperation. We have shown how automatic design can apply
domain-specific selection mechanisms to determine how individuals share information about
their state and environment. The automatic design of signalling protocols and communica-
tion strategies facilitates the transition from coexisting individuals with minimal interaction to
more structured collective systems. By enabling mission-specific information sharing, minimal
collectives can display informed collective actions.

The automatic design of domain-specific communication mechanisms can enable interoper-
ability, coordination, and cooperation between heterogeneous systems that initially do not
share a common communication protocol. By automatically designing both the collective
behaviour of robots and their communication strategies with other agents in the environment,
this approach could also facilitate the integration of robot swarms with other collective systems
in the EMERGE portfolio (i.e., neural networks, soft robots).

WP3 and WP4 will provide an archetypal representation that can be used to model commu-
nication strategies and to gain insights into how internal information flow drives the behavior
of distributed systems. It is reasonable to assume that equivalent mechanisms for both di-
rect communication and stigmergy-based communication can be identified in the interactions
within neural networks and soft robots. By adopting a shared language to represent these
mechanisms—the archetypes, we expect it will be possible to articulate communication strate-
gies across heterogeneous collective systems, even if the technologies (mechanisms) enabling
the required capacities are substantially different.

5 Conclusion and future plans

In this deliverable we design new forms of awareness, measure and control their contribution
to system performance, and finally automatically control agent awareness and behaviour.

5.1 Evolving exploitation of awareness

One of the most interesting aspects to the ability to give agent collectives a new sense of
spatial awareness, DSA, is the possibility that this opens up for new algorithms. The two
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examples described in Section 2, shape formation and intralogistics, are simple hand-crafted
demonstrations. However, in the field of swarm robotics, a common approach to algorithm or
controller design is the use of evolutionary algorithms or other automatic design methods to
discover controllers for individual members of a swarm such that a desired collective behaviour,
encoded as a fitness function, emerges as a result of the interactions between the robots, and
of the robots with their local environment. Evolutionary methods often discover unexpected or
surprising solutions that a human designer may not conceive. Making the DSA ability available
to be manipulated and used by the evolutionary process is an exciting avenue to pursue. The
path toward this that we envision uses the evolution of Behaviour Trees as robot controllers,
[31], exposing the DSA ability as custom leaf nodes. Behaviour Trees are desirable in this
case as a controller architecture due to their hierarchical structure, enabling decompositional
analysis for understanding and safety purposes. The granularity of representation of this
information to maximise novelty and interesting exploration is an open question.

As well as this, the process underlying DSA, Gaussian Belief Propagation (GBP), has some
similarities to other swarm consensus algorithms such as bee nest site selection [56]; where
beliefs are advertised to nearby agents, and these beliefs ”compete” by very simple local
processes until the swarm converges on a single best nest site. Best-of-n, [61], is widely
examined as a swarm consensus problem, but there are significant differences to GBP, which
deals with continuous quantities. We anticipate that a possible resolution may involve the
use of ring attractor networks of spin variables and similar neural-like structures that have
bioplausibility [58]. These can represent various types of continuous variables and have been
shown to perform something similar to Bayesian inference with noisy inputs [34]. By carefully
constraining allowable neural geometries and message passing primitives, we hope to evolve
solutions to achieving consensus on spatial relationships within a swarm.

Thus we plan to work on two levels; evolving higher level Behaviour Tree controllers that make
use of the global spatial information of DSA to achieve task performance in novel ways, and
at the lower level, to discover new, potentially low cost, bioinspired consensus algorithms for
spatial awareness.

5.2 Illuminating the awareness space for heterogeneous collectives

We have demonstrated that automatic design is a promising approach for discovering and
controlling emergent awareness in minimal collectives. In the next step, we will expand the
design space to strengthen its connection with the dimensions defined in WP1. We aim to
simultaneously explore multiple dimensions of awareness and incorporate agent heterogeneity
into the system. By doing so, we will illuminate the possible resolutions for awareness when
different dimensions (and capacities) are concurrently considered in the design process.

Our work so far has focused on enabling communication as a first step toward higher degrees
of awareness. However, we have yet to fully explore mechanisms and capacities related to
spatial, temporal, body, and metacognition dimensions of awareness. We plan to extend our
research in these directions. We expect that the automatic design approach used here, or sim-
ilar ones based on evolutionary optimization, can naturally expand to these dimensions. Just
as AutoMoDe selected behavioural modules based on direct communication and stigmergy,
it could also select mechanisms that provide awareness capacities in space, time, body, and
metacognition. For example, building on the work conducted in DSA, AutoMoDe could design
behaviours using either traditional local perception or the enhanced awareness provided by
DSA. In all cases, selection will be driven by performance optimization, allowing AutoMoDe to
balance trade-offs in a domain-specific way. Expanding the optimization-based design process
to incorporate these dimensions presents challenges. To address this, we plan to explore
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alternative approaches similar to AutoMoDe that can efficiently partition the design space.
Potential strategies include evolutionary optimization methods for illumination processes based
on quality diversity, such as novelty search [37] and MAP-Elites [44]. We expect that these
illumination methods will also support efforts in WP3 and WP4 to explore suitable archetype
networks for representing interaction dynamics in minimal collectives. In a sense, discovering
how combinations of capacities across dimensions result in different resolutions of awareness
is akin to discovering configurations of archetype units and connectors that can capture the
dynamics of those resolutions.

In the long term, we plan to apply our research to heterogeneous collectives composed of
agents with different capacities. Our work has demonstrated that automatic design can gen-
erate communication strategies for groups of robots. This capability has also been shown
in limited semi-heterogeneous cases [20]. We aim to extend our work to enable interaction
between agents with substantial different capabilities—tentatively, in transport, manipulation,
and communication. We anticipate that capacities for body and metacognition awareness
will play a crucial role in these systems. The automatic design process will have to explore
combinations of mechanisms that allow robots to recognize their own capabilities, share this
information with the collective, and engage in tasks suited to their abilities. As in our current
experiments, the proper selection of communication mechanisms will be essential for effective
interaction between agents. We expect a noticeable challenge on the concurrent automatic
design of control software across agents with different abilities—the size and complexity of
the design space is significantly larger than the one we considered so far. We expect that
partitioning the design space—also using evolutionary algorithms based on novelty search
and MAP-Elites—will help address this issue.
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[50] Gaëtan Podevijn, Rehan O’Grady, and Marco Dorigo. Self-organised feedback in human
swarm interaction. In Proceedings of the workshop on robot feedback in human-robot
interaction: how to make a robot readable for a human interaction partner, Ro-Man 2012,
2012.

[51] Craig W Reynolds. Flocks, herds and schools: A distributed behavioral model. In ACM
SIGGRAPH Computer Graphics, volume 21, pages 25–34. ACM, 1987.

[52] Michael Rubenstein, Alejandro Cornejo, and Radhika Nagpal. Programmable
self-assembly in a thousand-robot swarm. Science, 345(6198):795–799, 2014.

[53] Muhammad Salman, David Garzón Ramos, and Mauro Birattari. Automatic design of
stigmergy-based behaviours for robot swarms. Communications Engineering, 3:30, 2024.

[54] Muhammad Salman, David Garzón Ramos, Ken Hasselmann, and Mauro Birattari.
Phormica: photochromic pheromone release and detection system for stigmergic
coordination in robot swarms. Frontiers in Robotics and AI, 7:195, 2020.

[55] Melanie Schranz, Martina Umlauft, Micha Sende, and Wilfried Elmenreich. Swarm
Robotic Behaviors and Current Applications. Frontiers in Robotics and AI, 7:36, 2020.

[56] Thomas D Seeley and Susannah C Buhrman. Nest-site selection in honey bees: how well
do swarms implement the” best-of-n” decision rule? Behavioral Ecology and Sociobiology,
49:416–427, 2001.

[57] Touraj Soleymani, Vito Trianni, Michael Bonani, Francesco Mondada, and Marco Dorigo.

49



Funded by the European Union under Grant Agreement 101070918. Views and opinions expressed are however those of the author(s)
only and do not necessarily reflect those of the European Union or European Innovation Council and SMEs Executive Agency (EISMEA).
Neither the European Union nor the granting authority can be held responsible for them.

WP5 Emergent awareness - Collective understanding and control of multi-agent systems
D5.2 Emergent Awareness Control

Bio-inspired construction with mobile robots and compliant pockets. Robotics and
Autonomous Systems, 74:340–350, 2015. Intelligent Autonomous Systems (IAS-13).

[58] Vivek H Sridhar, Liang Li, Dan Gorbonos, Máté Nagy, Bianca R Schell, Timothy Sorochkin,
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