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Abstract

Awareness in biological agents has converging definitions when considering local states de-
scribing content-related consciousness from an agent-specific perspective. However, it be-
comes highly debated when it comes to global states. The issue magnifies when considering
collectives of artificial agents. Several frameworks exist, all unsatisfactory in the limitations
posed to agents’ heterogeneity and disappearance of the local self into an integrated state.

Ultimately, existing frameworks are ineffective in explaining, facilitating, and supporting cooper-
ative behaviours in artificial agents. The lack of a compelling theory of global awareness in Al
is currently a significant barrier to the effective deployment of artificial agents in the real world.

EMERGE tackles this grand challenge by introducing the novel concept of collaborative aware-
ness for collectives of minimal artificial beings. We will investigate how simple agents can
develop a representation of their mutual existence, environment, and cooperative behaviour
towards the realisation of tasks and goals.

EMERGE builds on a scenario of artificial beings with no shared language and constrained
individual capabilities, which nevertheless leads to high-complexity behaviours at the collec-
tive level. Collaborative awareness becomes an emergent process supporting complex, dis-
tributed, and loosely coupled systems capable of high degrees of collaboration, self-regulation,
and interoperability without predefined protocols.

EMERGE delivers a philosophical, mathematical, and technological framework that enables
us to know how and where to allocate awareness to optimally achieve a goal through the
collective. We will demonstrate EMERGE concepts on robotic use cases, with hints of the
broader applicability of the framework to the Internet of Things, pervasive computing, and
nanotechnologies. We will also investigate the ethical implications of collaborative awareness,
focusing on moral responsibility, vulnerabilities, and trust.

Consortium

The EMERGE consortium members are listed below.

T T

Universita di Pisa UNIPI

TU Delft TUD NL
University of Bristol uoB UK
Ludwig Maximilian University of Munich LMU DE
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1.

The core idea of the ACDS framework of EMERGE. The figure illustrates the

construction of an archetype network, starting from the abstract conceptual

space called the “Archetype Z00” (represented by the blue cloud) in box A. This

space contains fundamental archetypical units and connectors, akin to Platonic

forms of dynamical systems. Archetypical units include oscillators, multi-stable

systems, and integrators, while the connectors represent possible interactions

this abstract space, specific dynamical systems are instantiated in box B, such

as the damped harmonic oscillator and the spiking leaky-integrate-and-fire (LIF)

unit, both depicted In the yellow boxes. These systems capture core behaviors

observed in physical and biological systems, like oscillatory dynamics and spik-

Ing activity. An external signal, potentially representing real-world sensory data,

|
|
|
|
|
|
such as unidirectional and bidirectional links, operators, and nonlinearities. From |
|
|
|
|
|
|

feeds into the system and influences the behavior of individual downstream units

(akin to the neuron at the end of the axon of a biological neuron). The systems
are connected through instantiations of specific connectors, e.g. a neuron-like

connector In the figure (highlighted in green), which integrates the outputs of

different units into new inputs, shaping the overall system dynamics. This leads

to the formation of an archetype network, composed of multiple interconnected

units In box C (e.g., Unit 1 to Unit 7). The network topology, 1.e how units

performance of the system. Different network topologies yield distinct dynamical

properties. For instance, skew-symmetric topologies promote marginal stability,

enabling long-term information propagation, while hierarchical topologies foster

|
|
|
|
are connected, plays a critical role in determining the collective behavior and |
|
|
|
|

the development of different timescales across layers, supporting structured and

efficient information processing. By tailoring the composition and arrangement
of these archetypical elements, the archetype network can be optimized for spe-

| cific computational tasks, blending theoretical elegance with practical functionality. 14

2. visual summary of the progress and key developments ot Deliverable D4.2.

Advancements In Task 4.1 are highlighted in green, Tasks 4.2 and 4.3 in purple, |

and Task4.4inorange.| . . . . . . . .. ... 15

Physical systems In negative feedback coupling. The matrix regulating the

connections between the mechanical springs is antisymmetric (A = —A'). The

width of the arrows represents the connection strength, the positive feedback is |

green, and the negative teedback is red. Each spring receives a signal from the |

other springs of the same magnitude as the signal it sends but of inverse sign.| . 18

I'he Spiking Random Oscillators Network (S-RON) consists of N harmonic os-

cillators forced by coupled spiking LIF neurons in a feedforward fashion with

hard-threshold reset mechanism. A linear output layer maps the states of the |

mechanical oscillators in the desired output. This layer Is the only one that Is |

adapted duringlearning.|. . . . . .. . ... 23

5.

Comparison of accuracy across trials for (a) RON and (b) S-RON models.|. . . . 24

Comparison of backpropagation (left), DFA applied to recurrent networks (right),

and DFA applied to feedforward networks (middle). In the recurrent network, the

error Is projected through random matrices By, and By, with shared weight

matrices W and V across time steps (layers). In contrast, each layer of the

feedforward network has a different matrix. Grey arrows represent the forward

pass, and black arrows denote the update phase. While the RNN processes a

sequence with multiple time steps (here, 3), the feedforward network processes

asingleinputx. . ... .. .. 26
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[7.  Results on the Libras, Row-MNIST, Strawberry and ECG-200 datasets with a |
| *Vanilla” RNN architecture (orange and red) and with a GRU (blue and cyan). |
I'he models are trained with DFA (lighter colors, full line) and BPTT (darker
colors, dashed Tine). Error shades denote one standard deviation computed |
| over 5 repetitions with differentseeds.| . . . . .. .. .. ... ... ... .. ... 30

[8.  Equilibrium Propagation on a generic layered recurrent architecture. RON im- |
| plements an oscillatory dynamics at each layer. Note that the connections work |
| in both the forward (from the input to the output) and backward (from the output |

| tothe input) directions.|. . . . . . . . . . . .. L 31
[9.  Equilibrium Propagation on a generic layered recurrent architecture with a time- |
| Varying INPUL.| . . . . . o o e e e e e 33

[10.  Overview of the lifelong evolutionary swarms framework. The swarm, composed |
| of multiple agents, interacts with the environment through actions based on local |
| sensor Inputs (environment state) processed by an identical internal controller. |
| Each agent keeps a copy of the controller. The sequence of actions of an agent |
| determines the fitness of the controller. The evolutionary algorithm updates the |
I |
I |
I

controller based on their fitness. Periodically, the dynamic environment changes

the underlying task which requires the swarm to adapt to novel conditions with-
out forgetting the previous knowledge.| . . . . . . . .. ..o 36
[11. Fitness evolution of the best Individual In the population for each generation |
and across three tasks: red task (generations 0—200), blue task (generations |
200—400), and a return to the red task (generations 400—600). Line colors |
|
|

correspond to the task, and vertical dashed lines mark the transitions between
tasks. The rapid recovery of fitness after task switches highlights the system’s
| adaptability and transfer of knowledge between related tasks.| . . . . . ... . .. 40
12.  Current performance (solid lines) and retention at the population level (dashe
| lines) across task drift (line colors correspond to task colors). Population natu- |
| rally preserves past knowledge while adapting to new objectives.| . . . . . . . .. 41
[13. Current performance (solid lines) and retention at the individual level (dashed |
| lines) across task drift (line colors correspond to task colors). Retention fithess |
| demonstrates catastrophic tforgetting, as the best-performing individual on the |
| current task fails to retain knowledge of priortasks.| . . . . . . ... ... ... .. 42
[T4. Current performance (solid lines) and retention at the individual level (dashed |
| lines) for the red and green tasks when applying a fixed regularization coefticient, |
| A = 11. Retention is higher than without regularization (mitigating forgetting), |

| though at the cost of a reduced performance on the greentask. . . . . . ... .. 43
[15. Current performance (solid lines) and retention at the individual Tevel (dashed |

lines) for the red and green tasks when using model-specific regularization co-
efficients. This setup improves retention and the performance on the green task

| comparedtofFigure 14]] . . . . . . . . ... . L 44

[16. Impact of population scaling on current performance (solid lines) and retention |
| at the population level (dashed lines). The top plot shows results for a population |
| size of 100, while the bottom plot displays results for a reduced population size |
| of 15. Although the population size significantly affects the overall fitness levels |
I |
I

(higher fitness with a larger population), a smaller population is still able to
preserve some knowledge about previoustasks.| . . . .. .. ..o oL 45
[17. Current performance (solid lines) and retention at the population level (dashed |
| lines) across four sequential tasks (red, green, purple, and blue). The population |
| maintains sufficient diversity to retain knowledge on all previous tasks, while |
| adaptingtoNew ones.| . . . . . . . . . L e e e e e 46
[18. Number of species over generations with and without regularized evolution.| . . . 46
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19. Depiction of an assembly of RNNs. Straight arrows denote untrained connec-

tions, while wavy arrows denote trained connections. Left: Sparse Combo Net
trains only the connections between RNN modules leaving the internal connec-

tions of the single RNN moaules untramea Right: AdaDiag Sparse Net Zouri
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Executive Summary

This document is a deliverable of the EMERGE project, funded under grant agreement num-
ber 101070918. This deliverable, D4.2, is part of work package Learning and Evolutionary
Awareness — Adaptive non-linear dynamical systems for awareness (WP4), which focuses on
the development of computational mechanisms enabling adaptive and learning behavior in
archetype-based artificial systems.

D4.2 presents the final version of the Archetype Computing System (ACS) and introduces the
first implementation of the Archetype Adapting System (ADS), completing the conceptual and
technical foundations of the Archetype Computing and aDaptive System (ACDS) framework. It
consolidates the theory and implementation of archetype networks through extensions of the
Random Oscillators Network (RON), including antisymmetric and physically implementable
variants, and their integration with spiking neural components. On the adaptation side, the
deliverable introduces biologically inspired learning strategies such as Direct Feedback Align-
ment (DFA) and Equilibrium Propagation (EP), along with a framework for lifelong evolutionary
adaptation in swarm systems.

In addition to theoretical and empirical contributions, the deliverable reports on the continued
development of the ACDS software library, supporting experimentation and reproducibility.
The associated software framework is publicly available at: https://github.com/EU-EMERGE/
archetype-computing-adaptive-system.

1. Introduction

The EMERGE project aims to establish a novel computational framework inspired by the
emergent properties of simple, interconnected systems, exploring how awareness emerges
from the development and interaction of a collective of intelligent agents. As part of this broader
initiative, Deliverable D4.2 builds directly on the foundational work laid out in Deliverable D3.2
(“Archetype Units and Connectors”) and Deliverable D4.1 (“First Version of the Archetype Com-
puting System”), expanding these concepts into a robust and adaptive computing framework.

In Deliverable D3.2, the notion of archetype units and connectors was formalized, providing a
set of fundamental building blocks for constructing networks of dynamical systems. Archetype
units, such as oscillators, spiking neurons, and other interpretable dynamical models, serve
as the basic computational elements. Connectors establish interactions between these units,
enabling the formation of structured networks that we expect to be capable of complex informa-
tion processing. This work established the groundwork for the EMERGE Archetype Computing
and aDaptive System (ACDS), emphasizing the theoretical and practical aspects of assembling
these units into cohesive networks. Figure [1]visually represents these concepts.

Building upon this, Deliverable D4.1 introduced the first iteration of the Archetype Computing
System (ACS). This framework demonstrated how archetype networks could be employed to
facilitate intelligent computation through the dynamic interaction of minimal, adaptable units.
It explored various learning paradigms, including reservoir computing, physics-inspired neural
networks, and algorithms beyond traditional backpropagation, laying the theoretical and exper-
imental foundation for adaptive systems. The Random Oscillators Network (RON) model, a
key innovation of D4.1, exemplified the potential of archetype networks in creating efficiently
trainable recurrent neural architectures. Notably, the ACS framework proved to be more ef-
fective than standard methods in enabling efficient and adaptive learning, as evidenced for
instance by the superior performance of the RON model compared to traditional recurrent
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neural networks. A key visual representation of the WP4 work is provided in Figure [1} which
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Figure 1: The core idea of the ACDS framework of EMERGE. The figure illustrates the

construction of an archetype network, starting from the abstract conceptual space
called the “Archetype Zoo” (represented by the blue cloud) in box A. This space
contains fundamental archetypical units and connectors, akin to Platonic forms of
dynamical systems. Archetypical units include oscillators, multi-stable systems,
and integrators, while the connectors represent possible interactions such as
unidirectional and bidirectional links, operators, and nonlinearities. From this abstract
space, specific dynamical systems are instantiated in box B, such as the damped
harmonic oscillator and the spiking leaky-integrate-and-fire (LIF) unit, both depicted
in the yellow boxes. These systems capture core behaviors observed in physical and
biological systems, like oscillatory dynamics and spiking activity. An external signal,
potentially representing real-world sensory data, feeds into the system and influences
the behavior of individual downstream units (akin to the neuron at the end of the
axon of a biological neuron). The systems are connected through instantiations of
specific connectors, e.g. a neuron-like connector in the figure (highlighted in green),
which integrates the outputs of different units into new inputs, shaping the overall
system dynamics. This leads to the formation of an archetype network, composed
of multiple interconnected units in box C (e.g., Unit 1 to Unit 7). The network
topology, i.e how units are connected, plays a critical role in determining the collective
behavior and performance of the system. Different network topologies yield distinct
dynamical properties. For instance, skew-symmetric topologies promote marginal
stability, enabling long-term information propagation, while hierarchical topologies
foster the development of different timescales across layers, supporting structured
and efficient information processing. By tailoring the composition and arrangement
of these archetypical elements, the archetype network can be optimized for specific
computational tasks, blending theoretical elegance with practical functionality.

serves as a guideline for understanding the transformation of archetype units and connectors
into sophisticated networks designed for intelligent computation. The figure encapsulates

Funded by the European Union under Grant Agreement 101070918. Views and opinions expressed are however those of the author(s)

European
Innovation - Funded by only and do not necessarily reflect those of the European Union or European Innovation Council and SMEs Executive Agency (EISMEA). 1 4

Council

the European Union Neither the European Union nor the granting authority can be held responsible for them.



WP4 ‘Semm -— -
D4.2 First version of the ADS : M = R G =

\ll'

Archetype Computing/Adaptive System

4

L 2
ww  Architectural composition

Fully Feedforward Skew-symmetry
connected (hyerarchical)  (negative feedback)
[®00]
,e\ Section 3& r Section 2 [0eo0|
9-8 J looe]|
Section 7.1.1 Section 7.2
Reservoir .
Computing Evolutpnary
approaches Swarms

N Section 6
, ection 2.4 Section 4 Section 5 *k

Figure 2: A visual summary of the progress and key developments of Deliverable D4.2.
Advancements in Task 4.1 are highlighted in green, Tasks 4.2 and 4.3 in purple,
and Task 4.4 in orange.

the essential elements of the Archetype Zoo, where fundamental dynamical systems like
oscillators, multi-stable systems, and integrators are categorized, and the types of connections
that link them, including unidirectional, bidirectional, and nonlinear operators. We build neural
network architectures capable of solving downstream tasks by integrating external signals
with, for example, archetypal units such as the Damped Harmonic Oscillator and the Spiking
Leaky Integrate-and-Fire (LIF) neuron. This visual synthesis also highlights the role of modular
networks, with interconnected units forming an adaptive system capable of complex behaviors.
By mapping the flow of signals and the dynamic transformations occurring within the network,
Figure [1| provides a foundational overview of the architecture and function of the EMERGE
computational framework.

Deliverable D4.2 extends these efforts by presenting the first version of the Archetype aDaptive
System (ADS). We refer to ACS and ADS together as ACDS (Archetype Computing and
aDaptive System). This document details the transition from static computational structures
to adaptive, evolving networks capable of lifelong learning and real-time adaptation. Central
to this advancement is the transformation of archetype units and connectors into scalable
networks, optimized for task-oriented behavior.

The subsequent sections of Deliverable D4.2 are organized to reflect the progression from
foundational models to sophisticated adaptive frameworks, following the visual outline provided
in Figure This figure serves as a roadmap for the document, structuring its content into
distinct yet interconnected themes. It categorizes the key aspects of the ACDS into three
main areas: Architectural Composition, Modular Adaptation, and Learning Algorithms. Under
Architectural Composition, it depicts various network configurations such as fully connected
architectures, hierarchical feedforward systems, and the use of skew-symmetry to enforce
negative feedback for system stability. Modular Adaptation is illustrated through methods
like adaptive diagonal matrices and selective adaptation strategies, emphasizing the system’s
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capacity to adjust its parameters in response to changing environments. Finally, the figure
outlines the core learning algorithms explored in the document, including Reservoir Computing
approaches, Backpropagation, Direct Feedback Alignment, and Equilibrium Propagation, each
chosen for their potential to support efficient and biologically inspired learning in archetype
networks.

Final version of the ACS. The ACS has been completed by integrating several archetype
units, connectors, and networks.

Specifically, Section [2] introduces Anti-symmetric Random Oscillator Networks (aRON), an
extension of the RON architecture designed to improve stability and facilitate physical imple-
mentation. This section explores the theoretical underpinnings of aRON, providing conditions
for stability and showcasing experimental results. aRON is an archetype network composed
of harmonic oscillators archetype units (Section 2.2 of D3.2) interacting with each other
through a Neuron-like Connector (Section 3.6 of D3.2) with a global skew-symmetric struc-
ture in the coupling of the units (see also Section 4.4.1 of D3.2). We also considered and
implemented the Physically-implementable aRON (Section [2.4), leveraging antisymmetric
connections for the physically-implementable version of RON.

Section [3|integrates Random Oscillator Networks with spiking archetypes, forming the S-RON
archetype network. This hybrid approach leverages the strengths of both continuous and event-
driven dynamics. The section also outlines future directions for refining these hybrid models.
S-RON is an archetype network made of a layer of spiking Leaky Integrate-and-Fire (LIF)
units, as detailed in Section 2.10 of D3.2, which project feedforwardly into a subsequent layer
of harmonic oscillators (Section 2.2 of D3.2). The connections from spiking units to oscillator
units are modeled by the Threshold Connector, as described in Section 3.4 of D3.2, which
includes a reset mechanism, and connections from oscillators to spiking units are modeled by
a Series Connector as described in Section 3.1 of D3.2.

First version of the ADS. The ADS provides the necessary component to adapt archetype
units and networks.

Section shows how the antisymmetric physically-implementable RON can be effectively
adapted to a wide range of tasks with excellent results.

Sections |4 and 5| deal with learning paradigms alternative to backpropagation that are
included in the ADS. In particular, Section (4| focuses on Feedback Alignment methods. It
discusses Direct Feedback Alignment (DFA) for both feedforward and recurrent networks,
presenting experimental results and a critical analysis of its efficacy. Our work on Direct
Feedback Alignment for recurrent networks is currently under review at the 5th International
Workshop on Computational Aspects of Deep Learning within the 2025 ISC High Performance
(Hamburg). Section 5| introduces Equilibrium Propagation, an alternative learning strategy
grounded in physical principles. This section evaluates its application within archetype net-
works, highlighting its potential for biologically plausible and energy-efficient learning.
Section[g]describes how lifelong learning can be implemented through evolutionary adaptation.
We focus on the case of robotic swarms and we introduce the lifelong evolutionary swarms
framework, presenting an environment where distributed agents continuously adapt
through evolutionary algorithms. This section details the experimental setup, examines
quick adaptability and memory retention, and addresses challenges such as catastrophic
forgetting and stress resilience. Our work on lifelong evolutionary swarms has been recently
accepted at the 2025 GECCO conference (Malaga).

The ACS and the ADS are implemented in the ACDS library, described in Section[9] The ACDS
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library provides essential tools for implementing and experimenting with archetype networks.

In addition to the key advances in the ACS and ADS described above, we also describe some
preliminary results:

+ Section |7 presents preliminary results on training modular ensembles of Recurrent
Neural Networks (RNNs). It introduces the framework for collective negative-feedback
coupling, with advancements in trainable modular architectures and the integration of
attention mechanisms.

+ Section 8| advances the study of emergent awareness through modular RNN composi-
tion, investigating both temporal and spatial awareness in distributed networks.

We conclude the document in Section by synthesizing the insights gained and outlining
future research directions. Deliverable D4.2 is a key step in the EMERGE project, bridging
theoretical constructs with practical implementations in realizing adaptive, intelligent collective
systems.

2. Anti-symmetric Random Oscillator Networks

Random Oscillators Network (RON), as introduced in Section 3 of D4.1, is an archetype
network made of harmonic oscillators (Section 2.2 of D3.2) coupled by a neuron-like connector
(Section 3.6 of D3.2). The novelty of aRON lies in the topological structure of the coupling of
the archetype units, at the network level. We employ a skew-symmetric network structure. The
rationale of this network is that it is biased towards the identity and it is more stable because
of results in the literature of skew-symmetric couplings. Moreover, it has physical meaning in
terms of control systems because skew-symmetric coupling of two units equals connecting the
two units in negative-feedback. We provide theoretical evidence of stability of the model and
provide extensive experimental data showing the effectiveness of aRON in the classification of
time series.

2.1. The aRON model

We design an antisymmetric coupling for the units of the RON model, resulting in the Antisym-
metric RON (aRON). The idea behind an antisymmetric coupling is to endow the RON model
with increased ability to stably propagate information over long time spans. The antisymmetric
coupling is commonly present in many physical systems, where the modules to be coupled are
in negative feedback. Intuitively, in the presence of antisymmetric coupling, the activations of
a given module are inversely proportional to the activations of the module(s) it is connected to
(Figure[3).

Specifically, we introduce the discrete-time state-update equation of antisymmetric-RON (aRON),
as follows:

hivr = hy + 72441, (1)
Ziy1 = Zt+T(O'(Aht+Vut+1 +b) —’}/Ght —€®Zt), (2)

where A = (W — WT) — 41, is parametrized as in the EuSN model (see D4.1), and the
remaining components as in the RON model.

European Funded b Funded by the European Union under Grant Agreement 101070918. Views and opinions expressed are however those of the author(s)
Innovation unded by . only and do not necessarily reflect those of the European Union or European Innovation Council and SMEs Executive Agency (EISMEA). 1 7
Council the European Union Neither the European Union nor the granting authority can be held responsible for them.



WP4 ‘Comm -— -
D4.2 First version of the ADS : M = R G =

Figure 3: Physical systems in negative feedback coupling. The matrix regulating the
connections between the mechanical springs is antisymmetric (A = —A7”). The
width of the arrows represents the connection strength, the positive feedback is
green, and the negative feedback is red. Each spring receives a signal from the
other springs of the same magnitude as the signal it sends but of inverse sign.

2.2. Necessary condition for stability of aRON

h
Let us denote H; = ' . Then, the aRON model can be defined by the input-driven state-
Zy
update equation H;; = G(Hy, us41), where G : R2 x RT — R2H s defined by egs. () - (19).
In the remainder of this section, we assume that diag(e) = I and diag(vy) = ~I are scalar
matrices. The Jacobian of the G map computed on (H;, u;11), denoted with Ji, reads:

Ohy11 Ohyqa

oh 0!
Ji= ' o= 3)
0ziy1 O0zq1
8ht th

I+7°M; 7(1—7e))

- 9 (4)
™, (1—7e)
where
M, =D;(W — W —§I) — 11, (5)
D; =diag(¢’(W — W' — 6I)h; + Vuzq +b)). (6)

A widely known necessary condition for stability of reservoir computing systems is to impose
that the Jacobian evaluated at the origin, without input and without bias, has a spectral radius
close to 1. This condition ensures that, in the absence of input, the autonomous dynamics
of the system are asymptotically stable. Notice that, when using ¢ = tanh as nonlinearity,
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evaluating at the origin, without input, and without bias, then the diagonal matrix of (6) is the
identity matrix. Therefore, the Jacobian reads:

I+72(W—-W' —6I—7I) 7(1—71e)l
JO = ) (7)
T(W — WT — 61 —A~I) (1—7e)I

In the proposition below we estimate the location of the eigenvalues of J,, whose proof can be
found in Appendix [Al

Proposition 1. If ;1 is an eigenvalue of Jy, then y is at distance at most r max{|1—7¢|, /A2, + (6 +7)?}

from the set of values {1 — e} U {1 — 72(5 +~ £14]) : i\ is an eigenvalue of W — W '}, where
Amax IS the spectral radius of the skew-symmetric matrix W — W T

The set of values {1 — e} U {1 — 72(6 + v £ i)) : i) is an eigenvalue of W — W T} effectively
provide an estimation for the location of the eigenvalues of Jy, especially accurate for small
values of 7. Therefore, a necessary condition for aRON stability is that the set of these values
is completely contained inside the unit circle. In the theorem below, we formally write a few
inequalities that aRON’s hyperparameters must necessarily satisfy for stability. The proof can
be found in Appendix B

Theorem 1. Assume an aRON model with 6, ,e,v > 0. If the aRON of eq.s (1)-(19) is stable,
then

€

IN

: ®)

2
4 VSQ- 9)

+

Moreover, each eigenvalue i\ of the skew-symmetric matrix W — W T must have modulus
upper-bounded as follows:

A< /(6 +7)[2 - 26+ ). (10)

We can see from eq. that, for a given setting of 7, ~, positive values of the diffusion term
o0 can facilitate the necessary condition of stability to hold. In this sense, larger values of 6 can
help the stability of the aRON, but at the cost of a higher dissipation rate of the information flow.
On the other hand, values too large of ¢, e.g. 0 > % — 7, can cause instabilities. Therefore, ¢
must be carefully tuned for the specific task at hand.

We conclude with the following proposition that gives us a criterion on the norm of W to enforce
the necessary condition for the stability of aRON. The proof can be found in Appendix[C|

Proposition 2. A strategy to promote the stability of aRON model is to clip the norm of W
when reaching the following threshold value:

1
W < 5. (11)

We use the insights from Theorem|f]to guide the model selection of aRON in the experimental
section.
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Table 1: Average accuracy and standard deviation over 5 runs obtained from each model on

the considered benchmarks.

Model Leaky-ESN aESN RON aRON EuSN GRU
Adiac 0.69280. 0116 0.67930.0099 0.70900.0125 0.731500043 0.422190154 0.6322¢ 9235
SMNIST  0.87980.0022 0.88030.0040 0.95680.0020 0.9627¢. 0006 0.632100401 0.96860.0165
PSMNIST  0.8284¢.0272  0.90670.0054 0.87600.0050 0.9106¢.0065 0.43800.0244 0.87900.0085
Trace 0.96400.0206 0.97400.0080 0.99200.0075 0.99400.0049 0.82009.0228 0.99799.0040
Mallat 0.90119.0097 0.91790.0162 0.914200274 0.9179¢0.0230 0.33640.0306 0.2142¢ 0021
LIBRAS  0.79110.0083 0.7489.0147 0.79000.0151 0.79560.0166 0.772200136 0.8344¢. 0221

Table 2: Number of trainable parameters for each benchmark

Benchmarks ADIAC sMNIST psMNIST Trace Mallat LIBRAS

Parameters ~ 3.7k ~ 10k ~ 10k ~ 0.2k =08k =225k

2.3. Experiments

The models considered in this study were evaluated on six benchmarks with varying char-
acteristics: ADIAC, Trace, Mallat and LIBRAS, which primarly involve tasks with short-term
dependencies and sMNIST and psMNIST, which are designed to assess the models’ ability to
handle long-term dependencies. This selection of benchmarks was motivated by prior studies
demonstrating the advantages of using antisymmetric models, particularly in task involving
long-term dependencies. In addition, by including benchmarks with short-term dependencies,
this study aims to provide a more comprehensive evaluation of the models’ versatility across a
broader range of temporal dynamics.

Across all benchmarks, the reservoir computing models we evaluated (ESN, aESN, RON,
aRON, and EuSN) were configured to use the same number of hidden units, ensuring a fair
comparison of their structural characteristics. Specifically, the hidden layer sizes were set to:
50 units for Trace, 100 units for ADIAC and Mallat, 150 units for LIBRAS and 1000 units for
sMNIST and psMNIST. Furthermore, to mantain comparability with the previous architectures,
the fully-trained GRU was configured with a number of hidden units resulting in a similar
number of trainable parameters as the other models (Table [2). The corresponding hidden
unit sizes for the GRU were as follows: 28 units for ADIAC, 14 units for Mallat, 23 units for
LIBRAS, 6 units for Trace and 55 units for sMNIST and psMNIST.

To maximize the models’ performance, hyperparameter values were selected through an ex-
tensive grid search. RON and its antisymmetric variant (aRON) share the same set of hy-
perparameters, with a key distinction: the classical RON uses the spectral radius (p) to scale
the hidden-to-hidden weight matrix, while aRON incorporates a diffusive term to stabilize the
computation. Similarly, for ESN and its antisymmetric counterpart (aESN), both models have
comparable set of hyperparameters; however, unlike RON, the ESN does not include the
spectral radius as a tuning parameter.
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After this phase of model selection, each model was tested on five different runs, using the
same hyperparameter combination but varying the weight initialization. The results presented
in Table [f] show the average accuracies obtained across this runs, with the standard deviation
indicated as a subscript.

The results are displayed in Table |1l The best performance achieved for each benchmark is
highlighted in bold to facilitate comparisons.

From the results, it is evident that the antisymmetric version of the RON (aRON) consistently
outperform all other reservoir computing models across the benchmarks. Notably, aRON
significantly narrows the performance gap with fully-trained models, such as GRU. These
findings underscore the efficacy of introducing antisymmetric structures in reservoir computing,
demonstrating their potential as a promising direction for future research.

Additionally, the advantages of aRON are particularly pronounced in benchmarks designed
to test long-term dependencies, such as sMNIST and psMNIST. These results align with the
initial hypothesis that antisymmetric models would excel in tasks requiring the maintenance of
information over extended time steps. The improved performance in these benchmarks not
only validates the hypothesis but also highlights the robustness of antisymmetric reservoirs in
handling complex sequential data.

2.4. Physically implementable and Antisymmetric Random Oscillator Networks

In D4.1, Section 3.5, we introduced the Physically-implementable RON (PI-RON), designed
with TUD. Here, we briefly recall the model state update equation:

ht+1 = ht + TZt+1 (12)
Ziy1 = Zy + T(WTU(VU.H_1) — O'(Wht + b) — th — EZt). (13)

Similar to RON, we experimented also with the antisymmetric coupling of the PI-RON, where
the hidden-to-hidden matrix W is parameterized as (W — W7) — AL

We train the matrices V., T', E and the bias b via backpropagation. Table [4] reports the number
of trainable parameters for each dataset we used. Table (3| reports the accuracy obtained by
PI-RON on each dataset.

The results show that PI-RON does not degrade the performance with respect to RON, despite
its stronger constraints required to make it physically implementable. Moreover, the antisym-
metric coupling of the units often results in a performance improvement. This strengthens the
results previously showed for the antisymmetric RON model.

3. Integrating Random Oscillator Networks with spiking
archetypes

In the RON model, a sigmoidal neuron-like transformation is used to excite the harmonic
oscillator archetype units. We implement an archetype network with oscillator-based archetype
units which, differently from RON, are excited by a layer of spiking Leaky Integrate-and-Fire
(LIF) units, as detailed in Section 2.10 of D3.2. The connections from spiking units to oscillator
units are modelled by the Threshold Connector, as described in Section 3.4 of D3.2, which
includes a reset mechanism, and connections from oscillators to spiking units are modelled by
a Series Connector as described in Section 3.1 of D3.2. We describe in detail the equation
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Model Leaky-ESN RON aRON PI-RON aPI-RON
Adiac  0.6928p0116 0.70900.0125 0.731500043 0.72780.0063 0.7309¢.0082
SMNIST  0.87980.0022 0.95680.0020 0.962709.0006 0.95040.0032 0.95660.0037
Trace  0.96400.0206 0.99200.0075 0.99400.0049 0.98000.0151 0.97000.0127
Mallat  0.9011p.0097 0.914200274 0.9179.0230 0.92640.0017 0.93380.0063
LIBRAS 0.7911p00s3 0.79000.0151 0.79560.0166 0.81560.0138 0.82560.0103

Table 3: Accuracy of PI-RON on all datasets against RON and the ESN.

Dataset ADIAC sMNIST Trace Mallat LIBRAS

#Parameters ~ 3.7k ~ 10k =~02k =~08k =~225k

Table 4: Number of trainable parameters of PI-RON for each dataset.

ruling the dynamics of the model, and provide an empirical evaluation of the performance on
time-series benchmarks. Then, a subsection discusses future directions for Mixed-RON and
Spiking-Mechanical RON

3.1. The S-RON model

The second-order ODE of RON describes a pool of heterogeneous oscillators as follows:

y=£f(t)-v0y-€c0vy, (14)
where © denotes the point-wise multiplication of vectors, v,e € R are the vectors collecting
all v and ¢ for each of the oscillators. Similarly, y,y € RY collect all position and velocity for
each of the oscillators. In the original RON model we have a sigmoidal layer that excites the
harmonic oscillators:

f(t) = tanh(Wy + Vu(t) + b), (15)

and u(t) is the external input driving the network.

Here we consider replacing the sigmoidal layer of RON with a layer of spiking archetype units
of the Leaky Integrate-and-Fire kind, where the dynamics of f(¢) are ruled by:

0f = —f + Wy + Vu(t) + b, (16)

where 6 is the resistor-capacitor time constant, and with a hard-threshold reset mechanism as
follows:

if fi > fthresh, (1 7)

where f; denotes the i-th component of the spiking dynamical vector f(t), while finresh is the
threshold value that activates a spike, and freset is the value f; is reset after the i-th neuron
fires.

then f; = freset,
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Figure 4: The Spiking Random Oscillators Network (S-RON) consists of N harmonic oscillators
forced by coupled spiking LIF neurons in a feedforward fashion with hard-threshold
reset mechanism. A linear output layer maps the states of the mechanical oscillators
in the desired output. This layer is the only one that is adapted during learning.

The discrete-time realization of such a system reads:

hyy1 =hy + 72441, (18)
21 =2 +7(f(t) —y O hy —e O z), (19)

We call the resulting archetype network Spiking-RON (S-RON). Therefore, S-RON is an archetype
network comprehending both spiking and harmonic archetype units.

3.2. Preliminary Results and Future Directions for S-RON

Extensive grid search was conducted to determine the optimal parameters for the S-RON
architecture on the sMNIST classification task. The best-performing parameters identified are
reported in Table |5 Using the hyperparameters of Table |5, the S-RON achieved training and

Model selection T threshold 0 reset
Best value 0.02 0.008 0.035 0.004

Table 5: Best S-RON hyperparameters found by grid search for the sMNIST classification task.

test accuracies of 0.65 and 0.64, respectively, on the sMNIST classification task. These results
demonstrate the model’s capability to capture complex dynamics through its spiking-based
excitation layer.

When evaluated on the MNIST dataset, S-RON exhibited a slight drop in accuracy compared
to the traditional RON architecture. Despite this minor reduction in accuracy, S-RON offers
several advantages due to its spiking neuron dynamics. By employing a biologically inspired
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Figure 5: Comparison of accuracy across trials for (a) RON and (b) S-RON models.

leaky integrate-and-fire mechanism, S-RON models neuronal behavior more realistically and
enables energy-efficient computation. The use of spikes allows the model to better capture
temporal dynamics and sparse activation patterns, making it well-suited for time-series tasks
and neuromorphic computing applications. These unique features position S-RON as a promis-
ing alternative to the traditional RON despite the slight compromise in accuracy.

The results presented in Figure [5| provide a visual comparison between the performance of
the RON and S-RON models. RON consistently achieves higher accuracy across training,
validation, and test stages, maintaining performance around the 0.72 range. In contrast,
S-RON displays slightly lower accuracy, peaking at 0.65 for training and around 0.64 for test
accuracy. Despite this drop, S-RON’s advantage lies in its biologically inspired mechanism,
using spiking neurons that enable sparse, efficient computation more easily deployable in neu-
romorphic scenarios. The fluctuations in S-RON’s performance are a reflection of the spiking
behavior’s sensitivity to parameter tuning and the timing of spikes, which introduces variability
but also opens opportunities for more nuanced modeling of sequential data. Additionally,
S-RON'’s lower energy usage and closer alignment with real neuronal activity position it as
a more efficient alternative for neuromorphic hardware applications despite the slight trade-off
in accuracy.

Future directions on hybrid oscillator-spiking models Ongoing and future work on S-
RON focuses on fine-tuning and testing the model on additional benchmarks, such as the
Mackey-Glass forecasting task. Efforts are also being directed toward smoothing the dynamic
response of the S-RON to better align with the original RON’s behavior. This optimization
aims to leverage the architecture’s potential for more efficient and robust time-series modeling.
The next phase of research will also explore the integration of computational layers with a
variable mixture of spiking LIF neurons and damped harmonic oscillators to further enhance
the computational power and versatility of the model.
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4. Learning via Feedback Alighment

Backpropagation (Rumelhart, G. E. Hinton, and Williams [1986) is the long-standing algo-
rithm for credit assignment in artificial neural networks. Its efficient implementation in digital
computers has supported the surge of machine and deep learning techniques as one of the
key advancements in the field of artificial intelligence (LeCun, Bengio, and G. Hinton [2015).
However, with a few exceptions (Wright et al. 2022), the adoption of backpropagation-based
learning systems is still mainly limited to digital computers and simulations. It is well known that
backpropagation cannot be easily implemented and deployed in physical systems (Momeni et
al. 2023; Lillicrap, Santoro, et al. 2020). Physical deployment of backpropagation is even more
challenging in RNNs (Elman [1990), where credit assignment must be performed across time
through BackPropagation Through Time (BPTT) (Werbos|1990). This issues limit the extent
to which archetype networks can leverage backpropagation to adapt their dynamics. Over
time, several backpropagation-free algorithms have been proposed (see Section for a
non-exhaustive overview), some of them with the explicit objective of being compatible with
the implementation in physical systems or on unconventional hardware (e.g., neuromorphic,
optical).

We focus on Direct Feedback Alignment (DFA) (Ngkland 2016), a backpropagation-free al-
gorithm for credit assignment that removes the weight transport issue and also allows parallel
computation of the weight update. DFA has already been implemented in nonconventional
hardware, especially photonic (Filipovich et al. 2022). The photonic co-processor introduced
in Launay et al. 2020| scales DFA to trillion-parameter random projections.

We briefly review DFA for feedforward networks in Section We propose an extension of
DFA tailored to recurrent neural networks. Our approach is able to compute the update of the
recurrent parameters in parallel over all the time steps of the input sequence, thus removing
one of the major drawbacks of BPTT. In fact, BPTT sends the error signal computed at the end
of the input sequence back in time to compute the network parameters update. Instead, the
update computed by our version of DFA is local at each time step, as it does not rely on the
update computed for other time steps. Due to the weight sharing present in RNNs, the local
update is eventually aggregated at the end of the input sequence to compute the final update.
The aggregation operation includes information from all the time steps, thus enabling learning
of temporal dependencies.

We develop DFA for both a “Vanilla” RNN and a Gated Recurrent Unit (GRU) network (Cho
et al. [2014; Chung et al. 2014). We benchmark both architectures against BPTT on four
time-series classification datasets and we find that DFA can achieve non-trivial performances
in all of the tested datasets but cannot always attain a performance comparable to BPTT. In
general, DFA shows strength in datasets with more than 2 classes and in datasets with a
limited number of training samples, although BPTT still surpasses its performance. We show
that the GRU architecture trained with DFA is able to learn longer temporal correlations than a
“Vanilla” RNN.

4.1. Related works

Lillicrap, Cownden, et al. |2016| proposed the Feedback Alignment algorithm (FA) as a bi-
ologically plausible gradient-free learning rule for deep learning. The key idea of FA is to
project the errors from the last layer of a deep feedforward architecture to the first layer via
random projections between consecutive layers. This simple algorithm has shown competitive
performance on the MNIST classification task against the commonly used backpropagation
algorithm.
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Figure 6: Comparison of backpropagation (left), DFA applied to recurrent networks (right), and
DFA applied to feedforward networks (middle). In the recurrent network, the error is
projected through random matrices By and By, with shared weight matrices W
and V across time steps (layers). In contrast, each layer of the feedforward network
has a different matrix. Grey arrows represent the forward pass, and black arrows
denote the update phase. While the RNN processes a sequence with multiple time
steps (here, 3), the feedforward network processes a single input x.

Pushing the FA idea to the extreme, Nokland 2016 proposed DFA, where the error is randomly
projected back to each layer with a direct shortcut connection.

Practical applications of DFA to RNNs have been explored in Nakajima et al.[2022. The authors
performed physical deep learning with an optoelectronic recurrent neural network. However,
in their pioneering work, they do not explore the DFA algorithm in the context of fully trainable
RNNSs, since they only provide a proof-of-concept using a reservoir computing model with
untrained reservoir connections (LukoSevicius and Jaeger[2009). We investigate the potential
of DFA on fully-trainable RNNSs.

Han et al.|2020 investigated a DFA-inspired algorithm for RNNs. However, their version of DFA
is restricted and cannot be applied to any recurrent or gated architecture, like our approach.
First, they implement an upper triangular modular structure. Second, they use random pro-
jections as powers of the same matrix, which effectively resembles an FA algorithm applied to
RNNs rather than a DFA algorithm for RNNs. Overall, our approach stems directly from DFA
and closely follows its assumptions without requiring any customization, thus remaining more
general and targeting any recurrent model.

4.2. DFA for feedforward networks

We first introduce DFA for feedforward neural networks (Figure [6, middle), to prepare the nota-
tion and set the stage for its extension to recurrent neural networks. Consider a fully-connected,
feedforward neural network with an arbitrary number of L layers (including input and output
layers), input size I, hidden size H and output size O. Each layer [ computes its preactivation
a; through a linear projection.

a; = Wiuy + by, (20)
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here W; € RHEXI RHxH ROxH ig the weight matrix for the input, hidden and output layers,
respectively. Similarly, b, ¢ R, | < L is the bias vector for the input and hidden layer and
by, € RO is the bias vector for the output layer. The input «; corresponds to the data sample
x for the input layer (u; € R’) and to the output of the previous layer for all other layers
(u; € R 1 > 1). The preactivation at each layer is passed through an element-wise nonlinear
function o (e.g., hyperbolic tangent) to generate the layer’s activation h;. The output of the
network g is read out from the last layer.

hl = U(Cll) (21)
g=nhr (22)

For each input example z, the loss function J (g, y) (e.g., cross-entropy or mean-squared error)
measures the error between the output and the target prediction y associated with the example
.

Updating the last layer's parameters Wy, by, via gradient descent is straightforward as there is
a direct dependency between g and the loss function J. For the cross-entropy or the mean-

squared error loss.

0J .
e=o-=9-y (23)
ar,

Therefore, e can be directly used to update Wy, and by,.

Wi < Wi —nehl (24)
bL — bL —ne, (25)

where 7 is the learning rate. The update of the last layer's parameters is the same for both
backpropagation and DFA.

For the hidden layers, backpropagation computes the update by propagating the error signal e
sequentially to lower layers (Figure 6] left). For any hidden layer, we have

Wi« W —n( (W 6aip1 © o' (@) w)), (26)

where © denotes element-wise multiplication and da;4; is the error signal coming from the
layer above. This last term requires the error to be computed sequentially one layer at a time.
This dependency prevents updating all layers in parallel.

DFA removes this limitation by projecting the error e directly to all layers, through a random
matrix B € R¥*9_ B can also be different for each layer. Crucially, the matrix B is kept fixed
and only governs the weights update. It does not take any part in the forward phase.

DFA updates each hidden layer via

Wi W —n( (Be®o'(ar)) ] ), (27)
bl — bl — T]( Be ® a’(al) ) (28)

These updates can be applied to each layer independently, thus enabling embarrassingly
parallel computation for all layers.

DFA also removes the weight alignment issue, as the update circuit uses random connections
instead of connections that always need to be synchronized with the forward circuit, like in
backpropagation.
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4.3. DFA for recurrent networks

We develop a version of DFA that is compatible with RNNs for sequential data processing
(Figure 6] right). We closely follow the DFA approach devised for feedforward networks and we
extend it to the recurrent case. Each example z is a sequence of T' input vectors:

x=(x1,...,27), (29)

where z; € R/. We consider the sequence classification task where each sequence z is
associated with a target class y. The RNN keeps an internal hidden state h € R¥ which is
updated at each time step. We first focus on the “Vanilla” RNN (Elman [1990), whose state
update of reads:

ht+1 = O‘(Wht +Vxiyr + b), (30)

where V' € R7*I js the input-to-hidden matrix and we call a; (pre-activations at time t) the
terms inside . In RNNs, the same layer is applied to all time steps (weight sharing). The
output ¢ of the RNN is computed from the hidden state:

g = o(WO'h; + b°U), (31)

where Wout ¢ ROXH gnd poUt ¢ RY. The nonlinear function o can be different from the one
used in the hidden layers. For sequence classification tasks the output is computed at the end
of the input sequence from hy.

Due to the weight sharing, the forward pass of an RNN can be interpreted as the unrolling of
the state update function over time. At each time step, the matrix W and V (and the bias as
well) are used to compute the next hidden state, much like the matrix W; is used to compute
the layer’s output in a feedforward network. The backpropagation algorithm applied to RNNs
(BPTT) updates the hidden-to-hidden weight W via

f)y 8ht

VwJ (9 W

(32)

The term a—y hides a dependency between hidden states ]_[t 1162;?1 which is due to the

sequential propagation of the error over the time steps.

Our DFA based algorithm for RNN removes this propagation and updates W by computing the
term & d tT 1 giug. The error signal e is projected via a random matrix B, randomly initialized

and kept fixed.
The equations for the update of W and V' via DFA read:

T

W W 1) (Be©o'(ar)) hiy, (33)
1;1:1

V< V-nd (Bewd(ar))zf (34)
t=1

The bias is updated by omitting the outer product.
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Table 6: Summary of datasets statistics and average test accuracy and standard deviation over
5 repetitions for all datasets and models.

Strawberry LIBRAS ECG200 Row-MNIST
Input size 1 2 1 28
Number of classes 2 15 2 10
Sequence length 235 90 96 28
Dataset size 983 360 200 70000
DFA GRU 79.73 £1.23 67.50+3.68 80.6+225 7249 +1.1
BPTT GRU 92.05+ 254 80.83+9.19 82.10+1.14 99.23 + 0.03
DFA RNN 67.84 +266 47.92+ 3.3 782+147 8748 +0.74
BPTT RNN 79.08 +£4.18 54.30 +18.32 83.30+2.1 96.69 +0.24

DFA for gated recurrent networks. In addition to the development of DFA for “Vanilla” RNNs
(Equation [30), we also developed a version of DFA for gated recurrent networks, focusing in
particular on the GRU network (Cho et al. 2014; Chung et al. 2014). The state update (forward
pass) for a GRU reads:

zty1 = Sig(W2hy + Vo + b2),

rir1 = SIQ(Wrhy + Vexg g + by),

ct+1 = tanh(We(hy © req1) + Vexepr + be),
hit1 = (1 —2t41) © ci41 + 2e41 © hy,

where tanh and sig are the hyperbolic tangent and sigmoid functions, respectively. Our DFA
update for all parameters of the GRU is provided in Appendix [El The output ¢ of the network
is computed from the hidden state h; as previously discussed.

4.4. Experiments

We implemented all our experiments in PyTorch (Paszke et al. 2019). Although DFA does
not compute a true gradient, we filled the “grad” attribute of each weight tensor with the DFA
update. This enabled us to use any PyTorch optimizer to apply the update. We used the Adam
optimizer for all experiments.

We assessed the performance of DFA against BPTT on the aforementioned “Vanilla” RNN and
GRU. We report the average test accuracy and standard deviation computed over 5 runs. Table
[6|reports a summary of the time series datasets statistics. We considered 4 different datasets:

1. Librad¥] Dias Daniel and Helton [2009| contains 15 classes associated with a different

*LIBRAS is the acronym of the Portuguese name “Lingua BRAsileira de Sinais”, is the official Brazilian sign
language.
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hand movement type. The hand movement is represented as a bi-dimensional curve
performed by the hand in a given period of time;

2. Row-MNIST (Deng2012): each image of the MNIST dataset is presented to the recur-
rent model one row at a time;

3. ECG200 (Olszewski, Maxion, and Siewiorek [2001): where each time series traces
the electrical activity of a subject recorded during one heartbeat. The task is a binary
classification prediction between a normal heartbeat and one highlighting a Myocardial
Infarction;

4. Strawberry (K. Kemsley n.d.) consists in classifying food spectrographs, a task with
applications in food safety and quality assurance. The classes are strawberry (authentic
samples) and non-strawberry (adulterated strawberries and other fruits).

The datasets are divided into train, validation and test sets according to the proportions 60%-
20%-20%. The hyperparameters have been selected based on a model selection with a grid
search (see Appendix [F|for the details).
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Figure 7: Results on the Libras, Row-MNIST, Strawberry and ECG-200 datasets with a “Vanilla”
RNN architecture (orange and red) and with a GRU (blue and cyan). The models are
trained with DFA (lighter colors, full line) and BPTT (darker colors, dashed line). Error
shades denote one standard deviation computed over 5 repetitions with different
seeds.

Table [6] reports the test accuracy achieved by all methods, alongside the specifics of the
datasets. Overall, BPTT still outperforms DFA across most datasets. Specifically, BPTT out-
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Figure 8: Equilibrium Propagation on a generic layered recurrent architecture.  RON
implements an oscillatory dynamics at each layer. Note that the connections work
in both the forward (from the input to the output) and backward (from the output to
the input) directions.

performs DFA with GRU architectures except for the ECG200 dataset, in which both learning
algorithms achieve a comparable performance.

With “Vanilla” RNN architectures, BPTT outperforms DFA except for the ECG200 and the
Libras datasets, where the average test accuracy of DFA (Figure [7] top-left panel, orange line)
is higher than BPTT’s one (red line) after the first 150 epochs. Moreover, in this dataset, DFA
has the same learning slope of BPTT either with vanilla RNNs (for the first 150 epochs) or for
GRUs (for the first 50 Epochs).

DFA seems to struggle with unbalanced datasets, like ECG200 and Strawberry. In the ECG
dataset, which is the one with the smallest amount of data, the test accuracy of RNN with
DFA is above the random performance of 12%. In the Strawberry dataset, the same model
with DFA shows an accuracy which is above the random performance of only 5%. In the case
of balanced datasets, RNNs trained with DFA are generally successful at learning temporal
correlations.

Overall, while BPTT generally resulted in higher test accuracy, DFA demonstrated comparable
performance particularly for ECG200 in both GRU and RNN models. This suggests that
although DFA is less accurate overall, it may be a viable alternative in scenarios where strong
parallelization combined with a physical implementation is a possibility.

There are still other aspects that require further consideration. For example, the choice of
the random feedback matrix is crucial, as it affects the trajectory of the parameters during
training. Moreover, different matrix structures are amenable to different implementations in
neuromorphic or unconventional hardware. Crafton et al. 2019|implemented DFA for feedfor-
ward architectures on neuromorphic hardware with a sparse feedback matrix, at minimal or no
performance loss.

Our algorithm can also be easily extended to deal with time series forecasting tasks, where the
prediction step is taken after each time step, instead of only at the end of the input sequence.
Further benchmarking of our DFA in these settings is required to understand its effectiveness.

5. Learning via Equilibrium Propagation

Equilibrium Propagation (EP) (Scellier and Bengio 2017), like Direct Feedback Alignment, is
a backpropagation-free algorithm for updating the parameters of an adaptive model. EP is
specifically designed for adaptive dynamical systems and, as such, it is an ideal candidate to
train archetype networks.

Following Ernoult et al. 2019, we first consider a hierarchical dynamical system resembling a
deep “vanilla” recurrent network. The state update for a generic hidden layer [ reads:

l _ 1 I1+1 l 1-1
Si41=0(Wps, ~ + Wesy ), (35)
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where the sets of connections Wy, W}, governs the propagation of the network’s activations in
the forward (from the input to the output) and backward (from the output to the input) directions,
respectively. In the case of symmetric connections one can use a single symmetric W matrix.
In the case of the input layer, its state is clamped to the value of the external input . In the
case of the output layer, the state update only considers the forward connections coming from
the last hidden layer, thus omitting the backward term and leading to:

st =o(WEsp™h). (36)

EP requires two phases: during the first phase the input « is propagated through the network
in the forward and backward directions by iteratively computing Equation After a certain
amount of steps ¢t € [1, K] the first phase terminates. K is a hyper-parameter of EP. The
second phase starts from the last activations computed during the first phase. In addition, the
state update of the output layer is modified as:

sty = o(WFsf ™) + BL(, s), (37)

where S is a scalar hyper-parameter and £ is a loss function that computes the distance from
the true target ¢ and the output of the network. A popular choice for the loss function is the
Mean Squared Error (MSE). The second phase lasts for T steps (a hyper-parameter) and
updates all the network’s states.

Figure [8| summarizes the architecture we considered for the EP training algorithm.

At the end of such process, EP updates a generic parameter W of the network via:

Y * 5 T avxr ) Ox s w )
W« W 6<8W (z, 84, W) 8W(w s ) (38)
where 7 is the learning rate, s, are the activations of the network after the first K steps and

s? are the activations of the network after the first K + T steps. The function & denotes the

primitive function regulating the dynamics of the network. It is defined such that %—f(w, s, W) =
st+1. Usually, the nonlinear function o is not considered by ®. We can define the primitive
function for the recurrent network of Equation (36| as: ®(x, s;, W) = .1, sW;stt1. We also
considered the RON model (Equation[T9} where W is a dense matrix instead of antisymmetric)
and trained it with EP on a static input. We added the oscillatory behavior to the vanilla RNN
unit of Equation We kept the oscillators fixed and trained the recurrent weight matrices.
This allows us to leverage the same & function to update the parameters, while using an
oscillatory state-update function.

On both MNIST and CIFAR10 datasets, RON trained with EP matches or surpasses the
performance of the vanilla RNN of Equation [36; we achieve 98% accuracy on MNIST and
47% accuracy on CIFAR10.

EP for time series processing. We adapted EP to maintain a memory of previous inputs to
process time series. Figure[9provides an overview of our approach. We consider an input time
series x of T steps. Each step is processed by either a vanilla RNN or RON. For each step of
the input sequence, EP performs both the first and the second phase previously describe. At
the end of the second phase, EP updates the parameters of the network. The state computed
at the end of the first phase are kept as the initialization for the subsequent input value from
the time series. The experiments are still ongoing. To the best of our knowledge, we are the
first to consider EP to learn adaptive dynamical systems for time-varying inputs.
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Figure 9: Equilibrium Propagation on a generic layered recurrent architecture with a
time-varying input.

6. Life-long evolutionary swarms

A swarm is composed of simple agents that interact locally and give rise to a decentralized,
self-organized behavior towards a common goal. Designing swarm controllers is a critical
challenge, as manually defining the individual rules to achieve a desired collective behavior
is often unfeasible due to the complex interactions and emergent properties of swarms. Evo-
lutionary algorithms provide an effective solution to this challenge, bypassing the need for
manual intervention and letting the environment decide which solutions are worth exploring
more than others. Yet, to truly operate in complex dynamic environments, swarm systems
must not only adapt to novel challenges but also retain previously acquired skills. For example,
a swarm that needs to solve a foraging task may be required to fetch different types of objects
and/or bring them to different locations. Changes in the task (e.g., fetching a different object)
require the swarm controller to adapt. Subsequent changes in the task should not erase all
the information, since previous tasks might occur again. A swarm able to preserve previous
knowledge will be able to adapt faster to reoccurring tasks than a swarm that always starts
from scratch.

This is precisely the focus of lifelong learning (Parisi et al. [2019), a research topic mainly
explored within deep learning (Masana et al. 2023) and, to a lesser extent, robotics (Lesort
et al. 2020). In lifelong learning a single agent, usually an artificial neural network, is trained
via backpropagation on a sequence of tasks. The network has to adapt to the new task and
preserve the performance on previously encountered tasks.

We merge the evolutionary and lifelong paradigms and propose a lifelong evolutionary envi-
ronment (Section for the design of swarm controllers (Section [6.3). Our objective is to
enable swarms to quickly adapt to new tasks while preserving previous knowledge. We study
the performance of the evolved population over the course of several hundred generations,
with particular attention to the drifting points when a new task replaces the current one in the
environment (Section [6.4.). Inspired by lifelong learning, we also study the performance of
the top-performing individual on a given task, and how much knowledge of previous tasks it
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retains. This is useful when deploying a single evolved controller in a dynamic environment
that can change at any moment. We discovered that, while the population inherently exhibits
a certain degree of retention due to its diversity (Section[6.4.2), the individual catastrophically
forgets previous knowledge (Section [6.4.3). Similar to regularization approaches in lifelong
learning (Parisi et al. [2019; Kirkpatrick et al. 2017), we propose a regularized version of the
evolution process that is able to mitigate forgetting for the top-performing individual, achieving
a controller that trades-off the performance on previous tasks and adaptation to the current
task.

The deep lifelong learning perspective based on a single agent may not be the only choice
to build adaptive systems that retain knowledge, as we discovered that an evolved population
with enough diversity is able to partially satisfy this requirement without an ad-hoc design. On
the other hand, ideas from lifelong learning can help guide the evolutionary process, opening
new challenges for the design of swarm controllers in dynamic environments.

6.1. Background

The evolution of swarm controllers focuses on environments where the task to solve do not
change over time. The literature is currently lacking a thorough study on how evolutionary
algorithms behave when the population of controllers needs not only to adapt to a given task
but also to retain information from previously encountered tasks. This challenge is instead
the focus of lifelong learning, and it is usually studied for single agents implemented by deep
artificial neural networks.

We therefore provide a short overview on lifelong learning first, and on evolution of swarm
controllers next. We devote particular attention to those aspects that will be leveraged for our
lifelong evolutionary swarms framework.

Lifelong learning. Lifelong learning (Parisi et al. 2019), also called continual learning (Cossu,
Bacciu, et al. [2021)), designs agents that learn from a stream of observations without forget-
ting previous knowledge. Lifelong learning is mainly studied in the context of deep learning
(Verwimp et al. |2024) and reinforcement learning (Khetarpal et al. [2022), where the learning
agent is a deep artificial neural network trained with backpropagation. However, its scope is
much broader, as it encompasses any environment where the task to solve is drifting over time
(Giannini et al. 2024) and it is not tied to the specific learning approach or model.

Recently, lifelong learning research focused on the forgetting issue that plagues neural net-
works and other predictive models (French [1999): upon learning new information, the model’'s
performance on previously observed data quickly deteriorates. For example, incrementally
adding new classes in a classification problem can reduce the model’s performance on pre-
viously encountered classes. Forgetting is mainly due to the network’s inability to maintain
a stability-plasticity trade-off (Carpenter and Grossberg [1986). Overly plastic networks tend
to forget previous knowledge, while overly stable networks are unable to adapt to new tasks.
To mitigate forgetting, a plethora of different solutions have been developed (Masana et al.
2023). One of the most popular approaches to combat forgetting is Elastic Weight Consoli-
dation (EWC) (Kirkpatrick et al. 2017) and variants thereof (Zenke, Poole, and Ganguli 2017
Chaudhry et al. 2018). The idea behind these importance-based regularization approaches
(Parisi et al. 2019) is to limit the plasticity of synaptic connections that are deemed important
for previous tasks. The plasticity is computed with respect to a previous version of the same
model that performed well on previous tasks. As a consequence, the network will be forced
to leverage the remaining connections for the adaptation to new incoming tasks, with an
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improved stability of previous performance. Computing the importance of a given synaptic
connection is at the heart of importance-based regularization strategies. Often times, the
resulting performance represents a trade-off between the ideal performance on new tasks and
the ideal performance on previous tasks. We exploit this idea and adapt it in our lifelong
evolutionary swarms framework to mitigate forgetting for the top-performing individual of a
population.

Swarm robotics Swarm robotics takes inspiration from swarms in nature with collective be-
haviour emerging through local interactions between agents and with the environment (Sahin
and A. Winfield 2008). A fundamental issue is the design of controllers such that a desired
collective behaviour emerges, common approaches include bioinspiration, evolution, hand
design, reverse engineering (Reynolds (1987 Hauert, Zufferey, and Floreano 2009; A. F.
Winfield|2009; Francesca and Birattari2016; Jones, A. F. Winfield, et al.[2019). Making swarms
adaptive to change is related to lifelong learning (Yao, Marchal, and Van de Peer|2014; Castello
et al. 2016). See Bredeche, Haasdijk, and Prieto 2018; Birattari et al. 2019; Schranz et al.
2020; Dorigo, Theraulaz, and Trianni [2021| for recent reviews. Much work has focussed on
neuroevolution of controllers; one state-of-the-art approach is NeuroEvolution of Augmenting
Topologies (NEAT) (Kenneth O. Stanley and Risto Miikkulainen 2002), which we use here.
NEAT not only searches for optimal neural network weights but also evolves network topologies
in search of the best minimal architecture. NEAT has been effectively utilized to solve highly
complex problems, such as double pole balancing, where it outperforms several methods that
rely on fixed topologies (Kenneth Owen Stanley and R. P. Miikkulainen |2004). The algorithm’s
superior performance can be attributed to three key features: the use of historical markers to
enable meaningful crossover between different topologies, a niching mechanism (speciation),
and the gradual evolution of topologies starting from simple initial structures (complexification).

In swarm robotics, NEAT has been applied to evolve neural networks for autonomous foraging
tasks, as demonstrated by NeatFA (Ericksen, M. Moses, and Forrest 2017). This approach
achieved performance comparable to or surpassing established algorithms such as the Central
Place Foraging Algorithm (Hecker and M. E. Moses 2015) (CPFA) and the Distributed Deter-
ministic Spiral Algorithm (DDSA) (Fricke et al. 2016). NEAT has also been used in distributed
online learning with swarms (odNEAT) (Silva et al. [2015). odNEAT operates across multiple
robots which have to solve the same task, either individually or collectively. A significant aspect
of odNEAT is its dynamic population management, where each individual maintains an internal
set of genomes, including current and previously successful controllers. odNEAT provides
results comparable to centralised approaches (K. Stanley, Bryant, and R. Miikkulainen 2005).

Lifelong neuroevolution In the context of lifelong evolution of neural networks, (Ellefsen,
Mouret, and Clune 2015) investigates how evolving modular neural networks can mitigate
catastrophic forgetting by reducing interference between tasks. The setup involves an abstract
environment where organisms evolve to maximize fitness by learning to consume nutritious
food and avoid poisonous food, with abrupt seasonal changes introducing new food sources.
By encouraging modularity through a connection cost mechanism, networks evolve to sepa-
rate functionality into distinct modules, enabling selective learning. This modularity improves
performance by allowing agents to learn new skills faster while retaining old ones. The study
highlights that modularity not only enhances learning dynamics but may also reflect an evolu-
tionary advantage observed in natural animal brains to combat catastrophic forgetting.

The study in Kashtan, Noor, and Alon 2007 explored how modularly varying goals (MVG) can
accelerate evolutionary processes in computer simulations. Leveraging on genetic algorithms,
the authors investigated how populations of networks evolve under temporally changing goals,
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Figure 10: Overview of the lifelong evolutionary swarms framework. The swarm, composed
of multiple agents, interacts with the environment through actions based on local
sensor inputs (environment state) processed by an identical internal controller.
Each agent keeps a copy of the controller. The sequence of actions of an agent
determines the fithess of the controller. The evolutionary algorithm updates the
controller based on their fitness. Periodically, the dynamic environment changes
the underlying task which requires the swarm to adapt to novel conditions without
forgetting the previous knowledge.

where each new goal shared subproblems with ones. The tasks involved combinatorial logic
problems, such as solving specific input-output relationships, which grew in complexity with
modular goal changes. Their results showed that MVG significantly reduced the number of
generations required to achieve a given goal compared to fixed-goal evolution.

To the best of our knowledge, we are the first to focus on lifelong neuroevolution of swarm
controllers.

6.2. An Environment for the Lifelong Evolution of Swarms

To study and address the challenges of i) quick adaptation in the presence of task drifts and
ii) retention of previous knowledge in swarm controllers, we present our lifelong evolutionary
framework (Figure [T0). This section only assumes that the swarm controller is optimized with
an evolutionary algorithm that keeps a population P of controllers (individuals) = € P. We
defer the discussion about the evolutionary algorithm we adopted to Section

Each agent in the swarm perceives the environment through their sensors. The perceived

European ded b Funded by the European Union under Grant Agreement 101070918. Views and opinions expressed are however those of the author(s)
Innovation Funded by . only and do not necessarily reflect those of the European Union or European Innovation Council and SMEs Executive Agency (EISMEA). 36
Council the European Union Neither the European Union nor the granting authority can be held responsible for them.



WP4 ‘Semm -— -
D4.2 First version of the ADS : M = R G =

state is local to the agent. The same controller is deployed across all agents, forming a
homogeneous swarm. It processes the local environment state, along with any additional
external information, to determine each agent’s next action. We define an episode-based
environment, where at the start of each episode the agents are positioned in the environment
and they move and operate for a fixed amount of K steps, at the end of which the episode
terminates. A step involves each robot sensing the environment, providing the observations
as input to the controller, generating output commands, sending them to the actuators, and
moving to a new position. The swarm’s objective is to solve a task, implicitly defined by a
reward function R : S x A — R, which takes an environment state s € S, an actiona € A
and returns a scalar reward. The rewards are summed across all K steps. Notice that the
proposed setup is not tied to a specific task, but it can be used with any reasonable reward
function.

At each generation of the evolutionary algorithm, each controller is evaluated across N ran-
domly generated environments with varying initial states, but with the same reward function.
The final fitness score is computed as the average total reward over the evaluation environ-
ments. Formally, the fitness for task ¢ of a controller 7TEI is:

1NK

fi(m) = D) Rulak = w(sk), sk)- (39)

i=1 k=1

The controller receives the current state s, and returns the action a;. The reward function, as
the fitness, explicitly depends on the task ¢ (Section provides our choice for the reward
function). The fithess is used by the evolutionary algorithm to update the controllers.

The key innovation of our framework is the introduction of dynamic target objectives that
change (drift) over the population’s lifetime. This sudden change mimics real-world environ-
mental shifts where the relationship between actions and rewards is redefined. This cor-
responds to a change in the mapping implemented by R. As a result, the top-performing
controller will see a decrease of its fitness, as it faces a new objective. We monitor the
performance on previous tasks by adopting the same evaluation protocol mentioned above.
For example, when evolving a controller on the second task, we measure its average fitness
over N randomly-generated environment according to the reward function of the second task
(adaptation), and on another N environments according to the reward function of the first task
(retention).

We formally define our evaluation metrics. We denote the retention of a (previous) task ¢t — 1 for
a controller = in a population P as f;—1(m). Among all individuals in a population P, evolved for
the current task ¢, we are particularly interested in the one with the highest current (C) fitness:

C(R) = {rnea]gt( (). (40)
This metrics quantifies the effectiveness of the evolutionary algorithm to find good controllers
for the current task ¢.

We can consider retention at two levels:

» Population Level: we examine whether some individuals in the population retain knowl-
edge from previous tasks. Such individuals are crucial as they can guide the evolutionary
process to quickly re-adapt when re-encountering a previously faced task. A diverse
population is expected to exhibit varying levels of retention across individuals. To capture

5Note that 7 defines the controller phenotype (a function mapping states to actions). The evolutionary algorithm
searches for fit phenotypes by acting on the corresponding genotypes.
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this, we evaluate each individual on the previous task and identify the one that retains the
highest performance (RP°P), i.e., the individual with the largest retention:

ngzi(Pt) :gle%gt(ft_l(ﬂ)' (41)

This metric is aligned with a multi-agent system, where we always consider that there is
a population of solutions, and not a single agent to be optimized.

« Individual Level: we measure the retention (R°P) of the best individual for the current task
on a previous task. This is particularly relevant when the population can no longer evolve,
such as during deployment, where a single controller is needed for inference. This is also
a more challenging objective, as the best-performing individual for the current task may
evolve specific skills that are useful for that task, and less useful for others:

Rio,pl(Pt) = fi1 <arg frﬂea]gf ft(W)) : (42)

This view is aligned with the lifelong learning approach, where a single agent is optimized
on a stream of tasks.

The main reason we are interested in assessing the retention of previous knowledge is that
previous tasks may reappear in the future. This is a well-known idea in lifelong learning, where
an environment with repeating tasks can be exploited by the agent to improve its performance
(Hemati et al. [2023). Interestingly, a large body of works in lifelong learning focuses on
environments that never repeat previous tasks, although the agent is still required to retain
knowledge about them; a case which is not that common in the real-world (Cossu, Graffieti,
et al. 2022).

We define forgetting F;_; for task ¢ — 1 as the difference between the best performance
previously achieved on that task and the retention after evolving for the subsequent task.
Formally:

FPYP = C(Py) = RYH'P (), (43)

Note that forgetting compares the performance on the same task (same reward function)
of two different populations. Although forgetting can be computed for the population at any
generation, it is most insightful when evaluated at the last generation of each task.

To experiment with our lifelong evolutionary framework, we chose foraging tasks as a well-
established benchmark in swarm robotics. Foraging requires the swarm to explore the envi-
ronment, identify target resources and transport them to a pre-defined drop zone. Foraging is
a useful benchmark for lifelong learning, as it can easily be extended to include changes in the
reward function. Our implementation requires the swarm to locate a set of boxes marked by a
target color. After a certain time, the target color changes and the swarm has to fetch the new
boxes instead.

6.2.1. Environment Setup

We implemented the foraging environment as a 2D continuous-space simulation using the
Gymnasiunﬁ library in Python (Towers et al. [2024). The environment consists of a 5-meter x
5-meter arena populated with swarm of agents and a set of color-coded boxes scattered across
the entire environment. The drop zone is positioned along the arena’s upper edge. Once an

®https://gymnasium.farama.org
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Table 7: The input and output nodes for the swarm’s neural controller. ¢ is the number of
possible colors available in the arena and n is the number of neighbors perceived.

Input Nodes Value

neighbor type (¢+3) xn {none, wall, agent, color; .}
neighbor distance n [0, 1]

neighbor direction 2xmn [0, 1]

heading 2 [0, 1]

carrying box c+1 {none, color, ..., color.}
target color c {color, ..., color.}
Output Nodes Value

wheel velocities 3 [~Vmazs Vmaz]

agent drops a box, it goes on to fetch another one. The simulation expires after a fixed amount
of time.

Each robot and box is represented as a point in the arena, with a diameter of 250 mm. Robots
pick up boxes by coming into contact with them, defined as the robot’s center being within a
125 mm radius of the box’s center. Similarly, they drop boxes when positioned near the drop
zone. Robots are equipped with omnidirectional wheels, enabling movement in any direction
at a maximum speed of 50 cm/s.

Robots operate solely on individual sensor input to replicate realistic swarm scenarios. Robots
lack knowledge of their global position, the location of boxes, or the drop zone.

To emulate the capabilities of real-world DOTS robots (Jones, Milner, et al. [2022), which serve
as the basis for our study, it is assumed that each robot can perceive the type, distance, and
orientation of entities (including other robots, walls, and boxes) within a 1m range. Robots can
also identify whether they are carrying a box, and determine their heading direction using an
onboard compass. The target color can be provided as input to the controller if needed.

For the experiments, the arena is populated with a swarm of five robots and 20 boxes of
various colors, with half matching the target color and the other half having a different one.
Each simulation episode includes K = 500 steps, with each step representing 0.1 seconds.
We used N = 10 evaluation environments.

Positive individual behaviors, such as picking up a correctly colored box, earn one point, while
delivering it to the drop zone earns two points. Conversely, picking up a wrongly colored box
results in a penalty of -1 point. Given s,a as two vectors defining the perceived state and
resulting action of each agent in the swarm, we define our reward function for task ¢ as:

+1, picking up a target ¢ box,

+2, delivering a target ¢ box,

—1, picking up a non-target t box,
else.

Ri(s,a) =

(si,a:)E(s,a)
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Figure 11: Fitness evolution of the best individual in the population for each generation and
across three tasks: red task (generations 0—200), blue task (generations 200—400),
and a return to the red task (generations 400—600). Line colors correspond to
the task, and vertical dashed lines mark the transitions between tasks. The rapid
recovery of fithess after task switches highlights the system’s adaptability and
transfer of knowledge between related tasks.

6.3. Lifelong Neuroevolution of Swarm Controllers

The swarm’s behavior is governed by an artificial neural network controller evolved using NEAT
(Kenneth O. Stanley and Risto Miikkulainen 2002). NEAT evolves both the network’s topology
and its weights. Network inputs consist of the robot’s local environmental observations, while
the outputs correspond to velocity commands for the robot’s three wheels. Before being pro-
cessed by the neural controller, observations are preprocessed. Categorical variables, such as
the type of perceived entities or the type of box being carried, are one-hot encoded. Continuous
variables are normalized to a range of 0 to 1, and angular directions are transformed into sine
and cosine components, ensuring smooth representation and continuity between angles like
1°and 360°. A detailed breakdown of inputs and outputs is provided in

Mitigating forgetting via genetic distance regularization As we will see in Section
the best performing individual on a given task is subject to forgetting of previous knowledge.
To mitigate this phenomenon we introduce a genetic distance regularization method, inspired
by Elastic Weight Consolidation (EWC) (Kirkpatrick et al. 2017) from lifelong learning. Our
approach adds a penalty term to the fitness function, like EWC adds a penalty term to the loss
function. EWC mitigates forgetting by pulling important weights of the current network towards
reference values that were effective for previous tasks. While originally designed for deep
learning, we adapted the same principle for the evolutionary algorithm used in our framework
by i) selecting important connections, ii) choosing a reference model, iii) pulling existing weights
toward their reference.

i) EWC uses the Fisher Information Matrix to select the important connections. Since we are
dealing with a gradient-free evolutionary approach, the Fisher Information is not available. Our
approach starts with a small network without hidden layers and evolve it using NEAT. This
allows the architecture to expand dynamically and to add or remove connections and nodes.
Therefore, we assume that all existing connections are important, as unnecessary ones would
likely be removed during the evolutionary process.

ii) It is straightforward for EWC to choose the reference model, as it trains a single network.
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Figure 12: Current performance (solid lines) and retention at the population level (dashed
lines) across task drift (line colors correspond to task colors). Population naturally
preserves past knowledge while adapting to new objectives.

Evolutionary techniques like NEAT, instead, maintain a population of solutions and thus require
a selection process to determine the best reference model (e.g., the simplest, the fittest, or
the network which changed the least). We select the individual with the highest regularized
fitness (Equation below) as the reference model. Moreover, the network’s architecture in
NEAT changes across generations. Therefore, we need to map the architecture of the current
individual to the reference network’s architecture. Given two controller's genotypes x; and x2,
we use the NEAT routine ¢ to compute their genetic distance:

_ clE(ml, $2) CQD(ml, mz)
max{|z1l, [z2|}  max{|z1], |z2|}

5(331, $2) “+c3 - W(ml, $2). (44)
The function is a linear combination of the number of excess genes F (present after the last
matching gene), disjoint genes D (non-matching genes between aligned matching genes),
and the average weight difference of matching genes W (including disabled ones), weighted
by coefficients c1, co, ¢35 and normalized based on the largest genome size.

i) Our approach computes the regularised fitness as:

1) = fulm) — Ao(@me, ), (45)

z denotes the genotype of an individual 7 from the current population, and z.~ is the genotype
of the reference model 7* from the previous task. The term X\ is a weighting coefficient that
controls the influence of the genetic distance penalty.

As with other regularization techniques in lifelong learning, we expect a trade-off between the
performance on the current task and the performance on previous tasks. A high regularization
will prevent the population to adapt, while a low regularization will not preserve previous
knowledge.

6.4. Experiments

We evaluate our lifelong evolutionary framework for swarms according to i) their ability to adapt
to novel tasks, including transferring knowledge from previous tasks to increase the perfor-
mance on the current one; ii) their ability to retain knowledge from previous tasks; iii) the ability
of the top-performing individual to mitigate forgetting with our genetic distance regularization.
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Figure 13: Current performance (solid lines) and retention at the individual level (dashed
lines) across task drift (line colors correspond to task colors). Retention fitness
demonstrates catastrophic forgetting, as the best-performing individual on the
current task fails to retain knowledge of prior tasks.

We present results averaged over five random seeds that control the initial network configu-
ration, the stochastic genetic operations (recombination and mutation), and the initial agents
and boxes location. This means that runs that achieve a similar fitness values may end up with
very different networks, potentially belonging to different NEAT species.

6.4.1. Quick Adaptability

We consider a dynamic environment where the task switches from retrieving red boxes to
retrieving green boxes and then it switches back to the red boxes. Upon task change, the
swarm should be able to quickly adapt to the new task (after a short transient). We also
expect the swarm to reuse previous knowlegde. This means that, whenever a previous task
reappears, the swarm’s performance should be higher than the one of a randomly-initialized
swarm controller.

shows the fitness of the top individual for each generation across the three tasks.
We observe that at generation 0 the swarm is unable to retrieve boxes (fithess around 0),
as the controller is still a randomly initialized one. As the evolution progresses the fitness
steadily increases up until 25 at generation 200, when the task drifts to the green boxes. The
fithess then suddenly decreases as the previously evolved controller still retrieves red boxes.
However, it does not drop to 0, highlighting that the swarm can indeed exploit knowledge from
the previous task. Morever, the swarm adapts much quicker than before, reaching the same
fitness of the red task in less than half of the generations previously required. This is further
evidence that prior learning on the red task has facilitated faster adaptation to the new objective.

The same rapid recovery is also observed after generation 400, when the red task reoc-
curs. Within the first 50 generations, the previous performance on the red task achieved
at generation 200 is fully restored. The lifelong evolutionary process is able to leverage
prior knowledge in order to speed up convergence on new tasks, requiring significantly fewer
generations. Compared to a static evolution setup, where each task is evolved separately and
by starting from a randomly-initialized population, lifelong evolution requires less resources and
can effectively transfer knowledge across similar tasks.
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Figure 14: Current performance (solid lines) and retention at the individual level (dashed lines)
for the red and green tasks when applying a fixed regularization coefficient, A = 11.
Retention is higher than without regularization (mitigating forgetting), though at the
cost of a reduced performance on the green task.

6.4.2. Forgetting in the population

In the spirit of lifelong learning, we measure the ability of the evolved population to mitigate
forgetting by retaining previous knowledge. We use the same dynamic environment of Section
Every 10 generations we evaluate the fithess on the previous task of each individual in
the population. shows the fitness of the best-performing individual at each generation
according to [Equation 41] We explicitly plot the retention curve, while the forgetting is obtained
by comparing the dashed red curve at generation 400 (performance on previous red task when
evolving on the green task) with the solid red curve at generation 200 (performance on the red
task at the end of evolution on the red task).

The red retention curve shows that at each generation in the green task there is always an
individual in the population able to preserve some knowledge about the red task. The retention
never drops below 10. The forgetting for the red task at the end of the evolution on the green
task is 9.9 fitness points. We observe a similar behavior when switching back to the red task
and measuring the retention on the green task (from generation 400). The forgetting in this
case is 14.2 fitness point (with a final performance on the green task of around 32 points).
Overall, we can see that lifelong evolution did not prevent the swarm adapting to a novel task
and it allowed individuals in the population to preserve knowledge about prior tasks without
being explicitly evolved for this purpose. Compared to the forgetting typically exhibited by
lifelong learning agents in deep learning (Masana et al. 2023), where the network completely
forgets previous task if no specific lifelong techniques are used, the lifelong evolution of swarms
is much more robust to forgetting. This is likely due to the variety of the population maintained
by evolutionary algorithms, like NEAT, that preserve previously discovered skills even though
they may not be immediately useful (Mouret and Clune 2015; Pugh, Soros, and Kenneth O.
Stanley 2016).

6.4.3. Forgetting in the individuals

Lifelong deep learning develops a single agent that needs to be capable to solve all en-
countered tasks. We study our lifelong evolutionary framework also from this perspective,
to understand the benefits and pitfalls of an agent-centric view. We adopt the same dynamic
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Figure 15: Current performance (solid lines) and retention at the individual level (dashed lines)
for the red and green tasks when using model-specific regularization coefficients.
This setup improves retention and the performance on the green task compared to
Figure 14

Table 8: Summary of results. “Red” and “Green” represent the current performance on their
respective tasks. “Ret. Red” indicates the retained performance on the red task after
evolving on the green task. Conversely, “Fgt. Red” measures forgetting on the red task
after evolving on the green task. The approaches include population-based evolution
(pop), top-performing individual (ind), regularized evolution with a fixed regularization
coefficient (reg) and with a model-specific coefficient (m.s. reg).

Red + Green? Ret. Red1 Fgt. Red |

pop 24.54 32.36 14.64 9.9

ind 24.54 32.36 2.08 22.46

reg 24.54 21.44 15.38 9.16
m.s. reg 24.54 28.5 19.52 5.02

environment of the previous sections. We select the top-performing individual on the current
task and we evaluate its performance on previous tasks. Note that this approach differs from
Section as there we selected the individual which performed best on the previous task.
The results, shown in are in stark contrast to the population-level retention. The
top individual catastrophically forgets previous knowledge, with retention scores dropping to
near-zero across all generations. Specifically, forgetting for the red task at generation 400
is 22.5, and for the green task at generation 600 is 19.9. Therefore, while lifelong evolution
supports retention at the level of the whole population, it does not do the same for each
individual. These results are aligned with the behavior commonly observed in deep lifelong
learning (Masana et al. 2023).

We tweak the evolution process with our genetic regularization, choosing as the reference
model the best performing individual on the red task right before the switch to the green task
(generation 200). shows the results of applying the same regularization coefficient
A = 11 on all runs. The retention curve is notably higher compared to the one without
regularization (Figure 13), reaching 15.38 at generation 400 and reducing forgetting to 9.16. In
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Figure 16: Impact of population scaling on current performance (solid lines) and retention at
the population level (dashed lines). The top plot shows results for a population size
of 100, while the bottom plot displays results for a reduced population size of 15.
Although the population size significantly affects the overall fitness levels (higher
fitness with a larger population), a smaller population is still able to preserve some
knowledge about previous tasks.

contrast, the prior experiment exhibited a complete performance drop with a forgetting of 22.5.

Aligned with the deep lifelong learning literature (Parisi et al. |2019; Kirkpatrick et al. [2017),
the regularization comes with a trade-off: the performance on the green task decreased from
32.36 (without regularization) to 21.44.

Model-specific regularization So far, we used the same X coefficient for all runs. However,
the coefficient directly impacts on architectural changes and, as such, different architectures
may need different values of A\. To test this hypothesis, we tuned A\ on each run separately
(each run using a different random seed). Aligned with our expectations, shows
that we can indeed improve both retention and the performance on the current task with a
model-specific A\. The retention for the red task at generation 400 reaches 19.52, reducing
forgetting to just 5.02.

We select the top-performing controller from the model-specific regularization runs and eval-
uate it across 100 environments per task. It achieves a fitness score of 28.5 on the green
task and 26.1 on the red task, with a forgetting score of only 2.2, demonstrating remarkable
multitask learning capabilities (Caruana |1997).

summarizes our results. The model-specific regularization retained the most knowl-
edge at the expenses of a slight performance drop on the green task. Even with a fixed A
value, a favorable balance between retention and current performance was achieved. At the
population level, the controller is able to adapt to new tasks and to preserve some knowledge
about previous ones.

6.4.4. Stress tests on the population

We turn our attention to two key factors of our lifelong evolutionary process: the population size
and the number of task drifts.

Reducing the population size. We study whether smaller populations are still able to pre-
serve previous knowledge. Starting from the same dynamic environment of Section [6.4.2, we
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Figure 17: Current performance (solid lines) and retention at the population level (dashed
lines) across four sequential tasks (red, green, purple, and blue). The population
maintains sufficient diversity to retain knowledge on all previous tasks, while
adapting to new ones.
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Figure 18: Number of species over generations with and without regularized evolution.

reduce the population from 300 to 100 individuals top) and as low as 15 individuals
bottom). For the former case, forgetting is 9.38, similar to what we achieved for a
population of 300. For the latter, forgetting is 1.38 but only because the performance on the
first task is very low. Therefore, smaller populations forget less only because they are unable
to adapt properly. When the population size enables effective adaptation, forgetting remains
comparable.

Increasing the number of drifts. Using a population of 300 individuals, we increase the
number of drifts to include four different tasks: red, green, purple and cyan. Since we need to
distinguish between more colors (eight in total, two per task), the input neurons for the neural

networks are increased correspondigly (Table 7).

We evaluate the performance on all previous tasks at the population level. shows
that the population successfully retains previous knowledge at a similar score, without being
significantly impacted by the addition of new tasks.
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Variation of species. We analyze the number of NEAT species present in the population
at each generation to understand how its diversity changes over time (Figure 18). When
evolving without regularization the evolution starts with around two species, which increase to
6 by generation 50. Over time, species with stagnating performance are gradually discarded.
This behavior repeats when the task changes. In contrast, the regularized evolution shows
a significant reduction in species diversity after the task change, when the genetic distance
penalization is applied. The population often converges to one or very few species, which
aligns with the objective of optimizing individuals to remain similar to the single reference
model. While this approach enhances retention and mitigates forgetting, it reduces diversity.
Incorporating mechanisms to preserve diversity around the reference model may improve
evolvability (Mengistu, Lehman, and Clune |2016; Lehman and Kenneth O. Stanley 2011) and
sustain evolution over longer time spans.

We believe our empirical results provide solid foundations for future work. Other lifelong
techniques may be adapted into our framework (e.g., replay (Hayes et al. 2021}, Merlin et al.
2022)) to improve retention. Lifelong learning may also benefit from the collective approach
of evolutionary algorithms, with opportunities to naturally mitigate forgetting by maintaining
an archive of previously useful skills (Lehman and Kenneth O. Stanley 2011) in the form of
compressed models. Lifelong evolutionary approaches can have an impact well beyond lifelong
learning and swarm intelligence alone. Letting the evolution and learning processes co-design
an adaptive system is indeed one of the most promising and interesting research directions we
can envision for the future.

7. Preliminary results on training modular ensembles of RNNs

Modularity has emerged as a crucial mechanism for building complex, integrated systems
from simpler, “primitive” learning modules. By leveraging the representational capacity of
these individual submodules, compositional learning enables the formation of richer and more
sophisticated representations. This concept mirrors the current understanding of the human
brain where, while sub-areas are delegated to specific tasks, the interactions among the
areas provide enhanced and more complex representations Lake et al. 2017, Changing the
perspective to one of semantic representations of concepts, combining simple concepts into
more complex ones is a cornerstone of the human ability to understand, reason, and learn.
Equipping learning modules with compositional abilities allows to benefit from the reuse of
specialized knowledge, as well as from richer representations to solve intricate problems more
accurately Sinha, Premsri, and Kordjamshidi 2024, Joining the notion of compositionality
to the landscape of dynamical systems leads to the desiderata of achieving the ability to
compose multiple dynamical systems into an assembly of dynamical systems, whose dynamics
emerging from appropriate modelling of their mutual interaction enrich the information of the
singles. This property is particularly beneficial in the context of sequential data processing
tasks, where RNNs represent a model of choice. Interpreting these models as an input-driven
dynamical system is a widely adopted practice in literature B. Chang et al.[2019 and, as such,
ensuring their stability is a crucial aspect to address.

In the following, we outline the two main research directions we developed for modular ensem-
bles of RNNs. In Section we explore the construction of stable RNN assemblies through
negative-feedback connections. In Section[7.2] we focus on adaptive learning of RNN modules,
enabling the dynamic activation of specific modules within an RNN ensemble.
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7.1. The framework of a collective of RNNs coupled in negative-feedback

In the context of assembling intelligent sequential models together, the seminal work in
Kozachkov, Ennis, and J.-J. Slotine 2022| first investigated stable assemblies of RNNs and
provided solution for coupling different stable RNN modules to preserve overall stability. The
main idea is to define RNNs that correspond to contractive dynamical systems and exploit
contract theory results in the literature Lohmiller and J.-J. E. Slotine 1998 to build up larger
RNNs of RNNs with stability guarantees.

We consider a number p of RNN subnetworks of the following type Kozachkov, Ennis, and J.-J.
Slotine 2022:
TX; = —X; + Wz(b(xz) + ui(t)a i=1,...,p, (46)

where x; is the hidden state of the i-th RNN, W, € RV*" are the recurrent connections, u;(t)
the input driving the i-th subnetwork, and ¢ is the nonlinear activation function, tanh in our
experiments.

Hierarchical coupling The simplest way to couple a collective of stable RNNs into a stable
RNN of RNNs is to introduce feedforward connections from one RNN to another, forming a
deep hierarchical RNN architecture. If the single RNN modules are stable, then by Lemma 2
and Theorem 1 of Gallicchio and Micheli|2017, we get that the deep hierarchical RNN is stable.

Enabling feedback connections can make the overall system dynamics potentially unstable.
However, this challenge can be addressed through architectural techniques, such as negative-
feedback couplings.

Negative-feedback coupling We couple the i-th RNN module with the j-th RNN module
them via matrices L;; € RV* with the skew-symmetric constraint as follows:
L;; = —L% (47)

Ji

so that the overall RNN of RNNs defined by:

p
TX; = —X1+W1¢(XZ) -f—ZLinj +ui(t), 1=1,...,p, (48)
j=1

is guaranteed to be a stable system whenever the single RNN modules in are themselves
stable Kozachkov, Ennis, and J.-J. Slotine [2022.

Their theoretical investigation is accompanied by the proposal of approaches to guarantee the
contractive dynamics of the single RNN modules accordingly. A first strategy relies on complex
optimization schemes to allow the adaptation of the RNN modules and the connections
between them with stability guarantees. However, a second, more straightforward and
better-performing strategy, denoted as Sparse Combo Net, consists of simply fixing the RNN
modules’ recurrent weights in a contractive configuration and only learning the connections
between RNN modules. These results highlight how it remains an open and pressing problem
to find strategies for adapting the internal weights of the RNN modules to outperform the simple
strategy of keeping them fixed.

Sparse Combo Net SCN initializes the weights W, in eq. according to the
criterion in Kozachkov, Ennis, and J.-J. Slotine 2022, Theorem 1 to achieve a contractive
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Figure 19: Depiction of an assembly of RNNs. Straight arrows denote untrained connections,
while wavy arrows denote trained connections. Left: Sparse Combo Net trains
only the connections between RNN modules leaving the internal connections of
the single RNN modules untrained. Right: AdaDiag Sparse Net (our) trains the
connections between RNN modules and also the internal connections of the single
RNN modules, which result in adaptive self-loops.

parameterization. Factually, such a criterion is too computationally intensive to be checked
at each weights-update iteration, they are left untrained throughout the learning process, while
the coupling matrices L;; are trained under the constraint of eq. (47).

7.1.1. Advancements on trainable RNNs of RNNs

Contrary to SCN, we take a step further and focus on constructing stable and fully adaptive
assemblies of RNNs, while relaxing from the complexity arising from the optimization of the
RNN modules. We propose a couple of strategies for adapting the internal weights of RNN
modules while ensuring contraction dynamics during training. We use the same methodology
as SCN for training the coupling matrices L;;, but we allow the internal connections of the
RNN modules to be trained. Both these strategies ensure that the spectral norm of the matrix
W, is less or equal than 1 during training. This guarantees that each single RNN module,
if decoupled from all the others, is contracting Yildiz, Jaeger, and Kiebel 2012. Both our
proposals involve the use of single RNN modules whose internal units do not communicate
with each other, i.e. the matrices W, are structured to be diagonal. We call this model
AdaDiag Sparse Net. Restricting individual RNN modules to a diagonal form limits their
expressiveness, as their neurons remain independent. However, the overall network preserves
its representational ability since the coupling matrices L;; enable communication between
neurons across different modules.

AdaDiag Sparse Net with tanh. We consider diagonal matrices W with entries constrained
via the component-wise application of the hyperbolic tangent on the entries of W;. This
strategy ensures that the diagonal elements of W, assume values in (—1,1). Therefore, the
spectral norm of W is necessarily less than 1.
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sMNIST psMNIST
Block Method
cC=5 C =20 c=5 C =20

SCN Sparse (3%) 77.994158 90.0410.72 74.3242.51 82.08+0.08
SCN Sparse (30%) 85.441167  90.0410.92 80.18+0.51 85.9141 36
AdaDiag (our) tanh 86.60+0.68 88.71+0.07 85.114+0.25 88.53+1.23
AdaDiag (our) clip 87741011  88.89+0.06 84.27+110 89.6310.25
Vanilla RNN dense 49.10 - - 71.60

Table 9: Performance of different configurations of assemblies (including number of coupling
blocks C) on sMNIST and psMNIST. The first two rows correspond to two sparsity
settings of the SCN model found in Kozachkov, Ennis, and J.-J. Slotine 2022. The
third and fourth rows correspond to our methods. In the last row, the performance
of a fully-connected RNN trained as a monolithic block, with a comparable number
of trainable parameters. We report the mean and standard deviation of the test set
accuracy averaged over three runs, apart from Vanilla RNN which is taken from S.
Chang et al. [2017. The best result for each dataset and coupling block configuration
is highlighted in bold.

AdaDiag Sparse Net with clip. We consider diagonal matrices W; with entries clipped to
0.99 whenever they exceed the value 1, or clipped to —0.99 whenever they assume a value less
than —1. This strategy ensures that the diagonal elements of W; assume values in (—1,1).
Therefore, the spectral norm of W, is necessarily less than 1.

Experimental results The purpose of our experiments is to provide an analysis of the
proposed strategies in comparison with the best model from Kozachkov, Ennis, and J.-J.
Slotine 2022| as baseline. In our setup, the assembly size is fixed to 16 recurrent modules,
each consisting of 32 units. For an assembly of 16 modules, the total amount of possible
coupling blocks is 240, but under the constraint of eq. (47), the total trainable coupling
blocks is 120 (i.e., 162&). We analyzed the behaviour under different levels of sparsity in
the modules’ coupling by setting the number of coupling blocks C to 5 and 20. To pursue
the aforementioned objective, we configured the initialization and the adaptivity of diagonal
blocks in the following four ways: (1) fixed, sparse matrix with 3% of nonzero entries (as
in Kozachkov, Ennis, and J.-J. Slotine 2022); (2) fixed, sparse matrix with 30% of nonzero
entries; (3) diagonal matrix adapted with strategy 1; (4) diagonal matrix adapted with strategy
2. The nonlinearity in eq. is tanh, and the discretization step is 0.03 (using forward
Euler method). We assessed all the configurations on the regular and the permuted version
of Sequential MNIST. We trained and validated each configuration on the given train/test split
three times. Each run was limited to a maximum of 200 training epochs, and we applied
early stopping when reaching a plateau in the validation accuracy. In Table [9 we report
the performance of all the assessed configurations, plus the performance of a Vanilla RNN as
reference. Starting from the configurations with lower coupling among the RNN modules, i.e.,
with C' = 5, we can observe that our model outperforms the baseline by ~ 2% with the clipping
method on sMNIST and by ~ 5% with the tanh method on psMNIST. From these results, we
deduce that the accuracy benefits from the adaptivity arising from the interaction between
the models when the coupling is low. Even more relevant, when the coupling is higher, i.e.,
with C' = 20, we experience a significant improvement in the performance on psMNIST, as
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Figure 20: Representation of the weights of the RNN of RNNs for each strategy on psMNIST
with C' = 20.

the adaptivity of the RNN modules tackles the higher complexity of the task. From a general
perspective, we observe that our strategies exhibit greater consistency in performance across
runs, as evidenced by a significantly lower standard deviation compared to Sparse Combo Net
in most cases. This improved stability can be attributed to the adaptivity of the RNN modules,
which help mitigate the impact of poor parameterization during the initialization phase. This is
further supported by the representation of the weights in Figure [20, where we can observe that
the entries of the coupling blocks tend to saturate more on the Sparse Combo Net. Hence,
we conjecture that adapting the inner dynamics of each RNN modules by accounting also
for the interactions with other networks allows to better accomodate the knowledge across the
assembly, ultimately leading to a performance improvement. We remark that adapting the RNN
modules in the training phase does not produce a significant overhead from a computational
perspective, as the Sparse Combo Nets required an average time per epoch of ~ 185s, against
the ~ 206s of our strategies. Finally, we conclude by noticing that, training as a monolithic
block a Vanilla RNN results in poorer performance in the considered classification benchmarks,
despite its theoretically greater expressive power due to lack of architectural constraints.

7.2. Integrating attention into reservoir-based assemblies

Our objective for this task is to combine several intelligent models, to enhance their dynamical
adaptability to different inputs. After performing different experiments on the composition of
multiple models, we propose a compositional approach based on Echo State Networks.

The major inspiration was the work from Goyal et al.|2019| in which the authors propose models
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Figure 21: ESNs Composition. In this case, a linear model (in red) and a non-linear one (in
blue) are composed via an attention layer. A linear readout is used to perform
the classification. We experimented with both a neural linear classifier and a ridge
regression model.

composition through attention layers. In this paper, they present the Recurrent Independent
Mechanisms (RIM), a modular architecture designed for out-of-distribution generalization with
recurrent models, like LSTM and GRU.

The RIM framework is built around three fundamental phases. In the first one, an attention
mechanism is employed to select the most relevant modules for each input sequence. After
that, each recurrent module runs its independent dynamics, given its hidden state. Lastly,
the k selected modules are updated through a second attention mechanism, that acts as a
communication layer across RIMs. In this way, each module can attend useful information
encoded in other modules’ hidden states.

In the paper, the authors show that such modular approach is able to better generalize to
out-of-distribution samples at inference time, with experiments on a variety of tasks.

Building on this idea, we propose an attention-based ESN composition model. Our intuition
is that, when dealing with dynamic scenarios, a single model could not be enough to solve
every task. In particular, scenarios where samples from different tasks arrive interleaved
over time are common in real-world situations. Such scenarios require an high adaptability,
which often cannot be achieved by a single model. We propose a modular framework that
enforces adaptation to different tasks via a learned composition of different modules. In these
preliminary experiments, we employ two Echo State Network modules, each with different
properties and dynamics. In particular, we define a “non-linear” ESN, i.e. with tanh activation
function, and a “linear” one, i.e. with the identity activation function. In principles, the first
model is more suited for tasks involving an high degree of non-linearity, while the second one
performs better in tasks which require more memory capabilities.

On top of these model, an attention layer from Vaswani et al. [2017|is trained to select the right
module for the task in input. We take the hidden state from each model at the last time-step,
and we compute a new hidden state given by their weighted sum. The weights are computed
by the attention layer. Formally, the composed hidden state h* is computed as:

Q, = Wih, K, = WFn, V, =W'h,
Q.(K,)T

h* = softmax () V,
Vi

where 6, = (Wi, WE Wv) are the attention’s parameters — namely the query, key and value
matrices — dj, is the key layer dimension and h,, is the hidden state for the module n, with N

(49)
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Linear ESN Non-Linear ESN
Linear Task 0.25 0.99
Non-Linear Task 0.8 0.01

Table 10: Ablation studies showing NRMSE (). We show that a given model, when applied to
its corresponding task, has the best results. However, a single model is not able to
achieve good performance on both tasks.

indicating the total number of modules. Note that, with this formulation, a soft composition is
implemented, rather than the hard selection of a single model. Figure 21| shows an overview
of the proposed model.

7.2.1. Experiments

To perform our experiments, we used the regression task from Inubushi and Yoshimura 2017,
where a strong memory-nonlinearity trade-off is introduced:

Yy = sin(vay—r) (50)

We defined a mixed dataset, composed by samples from two different tasks. Here, each task
is defined by setting the values of v, which influences the degree of non-linearity, and r, which
determines the memory capabilities needed. For the non-linear task, we set 7 = 1, logr = 1.6,
while the memory task is created with 7 = 20, logrv = —1.6. For ease of implementation, but
without loss of generality, we used a windowed approach: we consider each sequence in the
dataset as a portion of the entire sequence y, and for each portion we compute the target value
on the last timestep. We created 50000 sequences of length 1000 for each task, using 20% of
the dataset as a test set and the remaining sequences as training set.

First, we conducted a model selection process for both tasks to determine the optimal
configuration for the memory and non-linear models. We fixed the hidden size of the models
at 100 and focused primarily on the input scaling and spectral radius hyperparameters, as they
had the most significant impact. For each task, these values were randomly sampled from a
uniform distribution, with input scaling constrained to [0.2, 6] and the spectral radius to [0.1, 3].
As a result of this hyperparameter search, we obtained:

* Memory task — input scaling = 1.3; spectral radius = 0.9;
* Non-linear task — input scaling = = 3.2; spectral radius = 0.7.

Using these hyperparameters, we trained our attention-based model. Preliminary experiments
revealed that the best performance was achieved with an attention key and query size of 128
and a learning rate of 1073. To train the attention mechanism, we utilized a dummy MLP
classifier, enabling the use of the standard backpropagation algorithm during each training
epoch. However, at the end of each epoch, model evaluation was conducted using a Ridge
Regressor classifier. This approach resulted in a test set NRMSE of 0.032.

We also examined the attention scores on the test set to gain insights into the model’s behavior.
Figure illustrates this behavior, where each point represents the average attention score
assigned to the hidden state of the non-linear model across all test sequences. Since the test
set was not shuffled, the first half of the samples corresponds to the non-linear task, while
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Figure 22: Attention scores given to the non-linear model. The first half of the test samples
belong to the non-linear task, while the second half represents the memory task.

the second half represents the memory task. As expected, the model initially assigns high
attention to the non-linear model, followed by a sharp shift in attention when the task changes.

In summary, these preliminary results indicate that the attention mechanism successfully
selects the appropriate model based on the input task. Moving forward, we plan to
further explore this approach by tackling more complex tasks and experimenting with model
compositions involving a greater number of modules.

8. Preliminary results on awareness through a modular
composition of RNNs

In this section, we explore the emergence of temporal and spatial awareness within collectives
of recurrent neural networks. This study represents an initial step toward a broader
investigation into the development of awareness, with a particular focus on the temporal and
spatial dimensions. These aspects are especially relevant, as they align naturally with baseline
models like RNNs, which are inherently designed to process sequential spatio-temporal data.
In future work, we aim to extend this analysis by incorporating archetype networks, enabling
a more comprehensive understanding of the mechanisms underlying emergent awareness in
the context of the ACDS framework.

8.1. Temporal awareness in RNNs

We bind the notion of temporal awareness with two main tasks of recurrent models: time series
forecasting and Memory Capacity (MC). The former is the task of predicting future values of
a sequential signal based on its past observations. The challenge in time series forecasting
lies in capturing temporal dependencies, where past values influence future outcomes, thus
requiring the acknowledgement of contextual information through time. The latter measures
the ability of recurrent models to store and retrieve past inputs, measuring how well it is able to
reconstruct past inputs from its current state, typically evaluated using a linear regression task
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on delayed input signals. The MC of a recurrent model is given by:

MC = Z cy (51)
d=1

where Cy represents the squared correlation coefficient for delay d, defined as:

_ Var(i—q)
Ca = Var(uy)

where:
» uy is the input signal at time ¢,
* 1;_q is the RNN'’s reconstructed version of u;_g,
 Var(-) denotes variance.

When the recurrent model is instantiated as an ESN, the theoretical upper bound of memory
capacity is given by:
MC <N (53)

where N is the number of reservoir neurons Jaeger [2002. These two aspects intertwine to
define the temporal awareness of a machine learning model. Time series forecasting relies
on the model’s ability to interpret its current state to anticipate future values, while memory
capacity determines how much past information the model can retain and utilize. Together,
they enable the model to capture temporal dependencies, ensuring informed and accurate
predictions with respect to the current position in time.

When independent recurrent models, each with their own local temporal awareness,
communicate and exchange information, they collectively enhance overall temporal
awareness. Each model retains and processes different aspects of past information, and by
interacting, they can share complementary insights, reducing individual limitations in memory
and forecasting ability. This collaborative dynamic allows the system to integrate multiple
perspectives on past and future dependencies, leading to a more comprehensive and robust
understanding of temporal patterns.

8.1.1. Experiments

To demonstrate this property, we designed an experimental setup involving two primary ESNs,
with 100 units each and spectral radius of the recurrent transformation 0.9. The experiment
consists of three phases, each progressively increasing the level of interaction between the
models to assess their impact on temporal awareness.

Phases description In the first phase, both ESNs operate independently, each trained in a
standalone manner using ridge regression. This allows us to evaluate their individual memory
capacity and forecasting capabilities without any shared information.

In the second phase, we integrate the representations by placing the two reservoirs in
parallel and training a common readout layer. This setup enables the readout to leverage
complementary information from both reservoirs, leading to an improvement in overall temporal
awareness. The enhanced forecasting accuracy and increased effective memory capacity
indicate that integrating distinct representations enriches the system’s ability to capture
temporal dependencies.
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Random Mackey-Glass
Model

MC  Forecast MC Forecast
ESN;  28.52 0.227 146.19 0.0019
ESNy  25.31 0.220 141.95 0.0006
Parallel  33.11  0.229  283.39 0.0013
Merge  43.08 0.221 291.06 0.0001

Table 11: Results of the benchmarks. The acronym MC indicates the memory capacity and the
corresponding correlation metric is reported. The forecast metric is the MSE. Best
results are reported in bold.

In the third phase, we introduce direct communication between the two reservoirs by applying
a linear transformation to their respective states. This modification allows information to
flow between the ESNs, creating an emergent temporal awareness that surpasses the
capabilities observed in the previous phases. The improvement in both forecasting accuracy
and memory capacity confirms that enabling recurrent models to exchange information
enhances their ability to store past inputs and predict future values more effectively. This
result highlights that temporal awareness is not just a function of individual models but can
emerge through structured interaction, leading to more expressive and robust representations
of time-dependent data.

Benchmarks To assess the temporal awareness in the three phases, we employed two main
benchmarks:

1. Ani.i.d. random signal (i.e., the common benchmark for assessing the memory capacity);

2. The Mackey-Glass time series.

Results The results presented in Table provide a clear empirical validation of how
integrating and allowing communication between independent Echo State Networks (ESNs)
enhances temporal awareness.

The first two rows correspond to standalone models, £SN; and ESN- , each trained separately
on the two datasets: a random input sequence and the chaotic Mackey-Glass system. For
both datasets, the individual ESNs exhibit moderate memory capacity (MC) and forecasting
accuracy. Notably, in the random input case, E'SN; achieves a slightly higher MC than ES N, ,
while ES N, achieves a marginally better forecasting performance. This suggests that different
reservoirs may develop distinct local temporal awareness depending on their initialization
and training, reinforcing the idea that independent recurrent models capture complementary
information.

In the Parallel setup, where the two reservoirs are combined in parallel with a shared readout,
we observe a significant improvement in memory capacity for both datasets (33.11 for random
input and a substantial increase to 283.39 for Mackey-Glass, showing a clear exploitation
of patterns of the time series). This confirms that integrating multiple representations
enhances the ability to retain past inputs. Forecasting performance remains comparable to the
independent models, with a slight improvement for the random dataset but a small decrease
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Figure 23: Plots showing the correlation coefficient in the reconstruction process with
increasing delay on the Memory Capacity benchmark. The left plot shows the
correlation with the random signal, while the right one shows the correlation on
the Mackey-Glass time series.

for the Mackey-Glass dataset. The results suggest that while merging reservoirs provides
richer representations, the readout alone may not fully exploit this additional information for
prediction.

The final phase, Merge through communication, introduces communication between the two
reservoirs via a linear transformation of their states. This modification yields the best overall
performance across both metrics. Memory capacity reaches its peak values (43.08 for
random input and 291.06 for Mackey-Glass), demonstrating that allowing information exchange
between reservoirs significantly enhances the ability to store past information. This is further
confirmed by plots in Figure 23] where communicating models are able to retain a significantly
better reconstruction capabilities even with longer delays. Furthermore, the forecasting
performance improves, with the lowest MSE (0.0001) recorded for the Mackey-Glass dataset,
indicating a stronger predictive capability.

These results highlight how communicating internal representations brings further, emergent
temporal awareness. While individual ESNs exhibit local memory and forecasting
abilities, integrating their outputs improves memory capacity, and further allowing state
interactions leads to an emergent global temporal awareness. This suggests that structured
information exchange between recurrent models leads to richer, more expressive temporal
representations, ultimately improving both the retention of past inputs and the anticipation of
future values.

8.2. Spatial awareness in RNNs

Recurrent models processing time series data are inherently constrained by the spatial
information available in the input sequences. Since each model relies solely on the observed
signals, its internal representation and predictions remain bound to the spatial structure present
in those inputs. However, time series often contain latent spatial dependencies that are not
explicitly encoded in any single input stream, limiting the model’'s ability to capture the full
structure of the system it is learning.

When multiple recurrent models with different perspectives are brought together, they
can exchange information and uncover spatial patterns that neither model could deduce
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independently. This interaction allows them to infer missing spatial components by leveraging
complementary insights from each other’s learned representations. By doing so, they develop
an emergent spatial awareness, which extends beyond their individual observations.

This cooperative process enhances the models’ ability to recognize spatial relationships in
sequential data, improving both representation learning and predictive accuracy. Rather
than being constrained to the spatial information explicitly available in their respective inputs,
interacting recurrent models can synthesize a more complete and structured understanding of
the spatial dependencies underlying the time series.

8.2.1. Experiments

To evaluate the emergence of spatial awareness in recurrent models, we designed an
experimental setup using the chaotic Lorenz attractor time series, a well-known dynamical
system with three coupled differential equations that exhibit complex spatial dependencies.
The goal of the experiment was to investigate how recurrent models, specifically ESNs, can
infer missing spatial information when provided with partial inputs. In this setup, we test
the ability of ESNs to predict the full spatial dynamics of the system by combining different
perspectives of the input time series, particularly focusing on how the models can deduce
spatial components that are not explicitly provided in the input.

Phases description In the first phase, we train an ESN that takes the = component of the
Lorenz attractor as input and attempts to predict all three dimensions, (z,y, z). The model has
to infer the missing y and z components based solely on the temporal patterns within the z
series. In the second phase, a second ESN is trained on the y component of the attractor,
again attempting to predict all three dimensions. This setup allows us to assess how much
spatial information each individual feature carries and whether an ESN can predict the full
dynamics of the system with only partial input. Finally, in the third phase, we allow the two
ESNs to communicate with each other by introducing a linear transformation of their respective
states. In this phase, both the z and y components are provided as inputs, and the model
aims to predict all three dimensions (z,y, z). The introduction of communication between the
models tests whether this interaction allows them to uncover missing spatial components and
enhance the overall spatial awareness of the system.

The Lorenz system is described by the following set of ordinary differential equations:

dx

E:a(y—x)
dy
E—w(ﬂ—z)—y

dz

a—xy—ﬁz

where z, y, z represent the three spatial dimensions of the Lorenz attractor, and the parameters
o, p, and g are typically set to 10, 28, and 8/3, respectively, for the chaotic system.

Results The results presented in the Table demonstrate the performance of ESNs in
predicting the three dimensions (z, y, and z) of the Lorenz attractor under different input
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Model MSEonxz MSEony MSEon:z
x only 0.0007 0.0006 0.2212
y only 0.0020 0.0025 0.2214
xandy 0.00016  0.00007 0.2207

Table 12: MSE results for predicting the three dimensions of the Lorenz attractor. The Table
shows the MSE for z, y, and z under different input conditions. The best results are
reported in bold.

conditions. Specifically, we examined three configurations: training the model with only the
2 component as input, only the y component, and both z and y together. The table shows how
these different setups affect the MSE for each dimension, providing insight into the model’s
ability to predict the missing components when only partial information is available.

When the model is trained using only the = dimension as input, it performs relatively well
in predicting « and y, with low MSE values of 0.0007 and 0.0006, respectively. However,
the MSE for the z-dimension remains high at 0.2212. This result highlights that although the
model can capture some temporal relationships in the x and y components, the absence of the
y-dimension limits its ability to predict the full spatial structure of the Lorenz attractor. Without
y, the spatial dependencies between the three dimensions are not fully understood, and the
model struggles to account for the missing information in z.

Similarly, training the model with only the y-dimension as input results in relatively high MSE
values for both = and y (0.0020 and 0.0025), while the z-dimension’s prediction remains poor
(0.2214). The lack of the x-dimension restricts the model’s spatial awareness in much the same
way as the xz-only case. This suggests that a single dimension is insufficient for capturing the
full spatial dependencies in the system, and the model needs at least two complementary
inputs to build a more accurate spatial representation.

When both = and y are provided as inputs, the performance on the z-dimension remains similar,
but the interesting behavior is observed in the predictions for x and y. For these two variables,
the MSE shows a drastic reduction compared to the models that take only x or only y as
inputs. This significant improvement in the MSE of = and y, qualitatively reflected also in
Figure [24] highlights the model’s enhanced ability to capture hidden information embedded in
the spatial relationship between the two dimensions. It demonstrates how combining multiple
perspectives allows the model to better understand the complex interdependencies between z
and y, leading to a much more accurate prediction for both dimensions.

These results highlight the emergence of spatial awareness in recurrent models. When
provided with only a single spatial dimension, the model lacks the ability to fully capture spatial
dependencies. However, when both = and y are available, the model exhibits a significantly
improved understanding of their relationships, leading to a drastic reduction in prediction
errors for both dimensions. This suggests that spatial awareness emerges as the model
integrates complementary inputs, leveraging hidden dependencies that would otherwise
remain inaccessible. Ultimately, enabling models to interact with different spatial perspectives
enhances their ability to uncover and exploit underlying spatial structures.
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Figure 24: Representation of the predictions of the Lorenz system under different input

conditions.
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Figure 25: Archetype Computing and Adaptive System (ACDS) library, publicly available on

GitHub (left). The “archetypes”, “benchmarks” and “evolutionary” modules (middle)
together with the “equilibrium propagation” and experiment files on trained and
untrained archetype networks (right).

9. Software library

The Archetype Computing and Adaptive System (ACDS) library is available via GitHub at this
URL (Fig. [25): https://github. com/EU-EMERGE/archetype-computing-adaptive-system.

With respect to the status reported in D4.1 (to which the interested reader is referred to for
a general description of the repository), the ACDS library has received several improvements
from new contributors. Overall, the library features 6 contributors with 7 Pull Requests:

European
Innovation
Council

New additions to the archetypes include the Physically-Implementable RON archetype
network and both the Antisymmetric RON and Antisymmetric Physically-Implementable
RON networks, discussed within this document in Section 2] and respectively. All
the archetype networks can be found within the “acds” module of the library, in the
“archetypes” folder. The implementation of RON and an example usage is shown in
Figure [26] and [27] respectively.

The library also implements the Lifelong Evolutionary framework for swarms (within
the module “acds/evolutionary”) proposed and discussed in Section [g|

It is now possible to train recurrent neural networks with the DFA algorithm discussed in
Section[4.2](Figure[28). The corresponding experiment can be found in the “experiments”
module.

Similarly, the module “equilibrium propagation” collects our experiments using EP to train
archetype networks.

The library also includes new benchmarks within the “acds/benchmarks” module:
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RON archetype network

1 def cell(

2 self, x: torch.Tensor, hy: torch.Tensor, hz: torch.Tensor
3 ) -> Tuple[torch.Tensor, torch.Tensor]:

4 """Compute the nmext hidden state and <ts derivative.

5

6 Args:

7 z (torch.Tensor): Input tensor.

8 hy (torch.Tensor): Current hidden state.

9 hz (torch.Tensor): Current hidden state derivative.
10 e

11 hz = hz + self.dt * (

12 torch.tanh(

13 torch.matmul (x, self.x2h) + torch.matmul(hy, self.h2h) + self.bias
14 )

15 - self.gamma * hy

16 - self.epsilon * hz

17 )

18

19 hy = hy + self.dt * hz

20 return hy, hz

Figure 26: RON archetype network implementation in the ACDS library.

Application of RON on an MNIST time series

1 for images, labels in tqdm(train_loader):

2 images = images.to(device)

3 images = images.view(images.shape[0], -1).unsqueeze(-1)
4 output = model(images) [-1] [0]

5 activations.append(output.cpu())

Figure 27: RON archetype network applied on an input time series from MNIST with the ACDS
library.

Libras, CIFAR10 (both RGB and grayscale versions), Mallat and Trace.

10. Conclusions

This deliverable completes the development of the Archetype Computing System (ACS) and
introduces the first implementation of the Archetype Adapting System (ADS), finalizing the
core computational framework of WP4 in the EMERGE project. The ACS has been extended
with new classes of archetype networks that improve its theoretical properties and practical
relevance. In particular, we introduced antisymmetric Random Oscillator Networks (aRON) and
their physically implementable variants (PI-RON, aPI-RON), which are theoretically grounded
and empirically validated to enhance stability, expressivity, and physical deployability. We
also proposed hybrid architectures such as S-RON, integrating spiking neural dynamics with
oscillator-based computation. The results showcase the ability of dynamical systems built from
archetype networks to efficiently process time-varying inputs in an effective manner, solving
complex classification tasks as well as forecasting of chaotic dynamics.

On the adaptive side, we presented the first release of the ADS. We investigated biologically
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RNN model trained with DFA

for epoch in range(args.epochs):
for x, y in tqdm(train_loader):
x.to(device)
y.to(device) .long()
x.view(x.shape[0], -1, args.input_size)
output, hidden, dW, dV, dbW, error = model(x, y=y.squeeze(-1))
model . compute_update (hidden, dW, dV, dbW, error)
optimizer.step()
loss = criterion(torch.log(output), y.squeeze(-1))

X

y

1
2
3
4
5 X
6
7
8
9

Figure 28: An example of an RNN/GRU trained with DFA in just a few lines of code within the
ACDS library.

plausible and hardware-friendly learning mechanisms, including Direct Feedback Alignment
(DFA) and Equilibrium Propagation (EP), and introduced a framework for continual learning
in dynamic environments through evolutionary strategies applied to swarm systems. These
components enable adaptation to non-stationary tasks, with mechanisms for mitigating
catastrophic forgetting and preserving diversity.

Complementary results include early investigations into modular RNN assemblies and their
application to modeling temporal and spatial awareness. Together, these studies support the
long-term goal of EMERGE: enabling awareness to emerge in artificial systems through the
structured interaction of minimal, adaptive units.

The deliverable is supported by a unified software framework, the ACDS library, which provides
the necessary tools for experimentation, development, and reproducibility of the proposed
systems.

Finally, from a broader perspective, this deliverable contributes to the achievement of Milestone
4 of the project, which consolidates preliminary methods for archetype discovery, optimization,
and the definition of conditions for the emergence of awareness in collectives. The work
presented in D4.2 paves the way for the activities leading to Deliverable D4.3, which will
complete the development of the ADS by scaling adaptation mechanisms to the network
level. This progression will enable collective learning and coordination in distributed systems
of archetype agents. D4.3 will be a key contribution to Milestone 6, which marks the final
implementation and validation of the ACDS framework and its integration into demonstrators
of collaborative awareness.

A. Proof of Proposition[]]

A skew-symmetric matrix is a normal matrix, therefore, by the Spectral Theorem, there exists
a Q unitary matrix and A diagonal complex-valued matrix such that W — W' = QAQ*, where
* denotes the conjugate transpose. In particular, the skew-symmetric structure implies that
the elements on the diagonal of A, i.e. the eigenvalues of W — W, are purely imaginary,
i.e. of the form +i)\. All other matrices in the blocks of J, are rescaled version of the identity
matrix, i.e. of the form puI. Hence, when summing W — W' + I we can decompose it as
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W - W' 4 ul = Q(A + uI)Q*. Thus, we can write:

Q(TQA + (1 —72(6 + 7))I)Q* 7'(1 —7e)l

Jo = = (54)
Q(TA —71(6+ 'y)I)Q* (1 —7e)l
= PMP*, (55)
where
A+ (1—=72+)I 7(1 — 7o)X
_ (=72 @+ 71 =7 | 56)
TA —71(6+ 7)1 (1—7e)I
and P, P* are the unitary block matrices:
Q o
P = , (57)
0 Q
Q 0
P = (58)
0 QF
(59)
A+ (1 —-72(6 4+ 7))1 0
= ( ) + (60)
0 (1—7e)I
0 (1 —7e)l
+ = (61)
TA —7(0+ 7)1 0
=L+E. (62)
Given the decomposition: Jo = PLP* -+ PEP* , Bauer-Fike theorem Bauer and Fike
S—— S——

diagonalizable  perturbation
1960 implies that if i« is an eigenvalue of J, then it stands at distance at most || PEP*|| from the
diagonal values of the diagonal matrix L, i.e. from the set of values {1 —7e}U{1—72(§+~=%i)) :
i) is an eigenvalue of W — W }. Now, it remains to estimate the norm ||[PEP*||. First we

notice that, since the matrix P is unitary then ||[PEP*|| = ||E||. Finally, notice that
0 (1 - 7o)l
E = = (63)
TA —7(6+7)I 0
0 I (1 —7e)I 0
= (64)
I o 0 TA —7(6+7)1
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01
Therefore, ||E|| < || [l max{||7(1—Ts)IH, [|TA—=71(6+7)I||} = 7max{|1—Tel|,|£i\—
I 0

(6 + I} = Tmax{|1 — 7el, /Ao + (0 +7)}-

B. Proof of Theorem({]

Necessary condition for aRON stability is that the set of values {1 — re} U {1 — 72(0 + v £ i) :
i) is an eigenvalue of W — W '}, derived in Proposition 1} is entirely contained inside the unit
circle. The farthest of these points from the origin is either 1 —7c or 1 — 72(§ 4+~ +iAmax ), Where
Amax iS the spectral radius of the skew-symmetric matrix W — W ' It follows that a necessary
condition for aRON stability is:

max{|l — 7¢, \/(1 — 726+ 7))2+)\I2nax} <1 (65)

In particular, it must hold that |1 — 7¢| < 1, and \/(1 —72(0 + 7))2+/\2

max

that = < 2, while the second implies that (1 — 72(6 + 7)) *+A2, < 1, i.e. that A2, < 72(5 +

max — max

v)[2 = 72(6 4 7)], from which it follows that 2 — 72(5 +~) > 0. Moreover, each eigenvalue i\ of
W — W satisfies |A| < [Apax| < T\/(é +7)[2-72(6+7)].

< 1. The first implies

C. Proof of Proposition 2

We start by proving that the spectral radius A\, of W — W is upper-bounded by 2||W||.
Notice that, for any normal matrix M, it holds that p(M) = ||[M]||. Now, W — W' is a
skew-symmetric matrix, and in particular, a normal matrix. Thus, Apax = p(W — WT) =
IW — WT|| < |[W]||+ ||[WT|| = 2||W]||. From Proposition [1, we know that a stable aRON
model must have recurrent weights W such that the spectral radius, Ayax, of W — W' is

upper-bounded by T\/((s—f-’)/) [2—72(0+7)]. Therefore, since Amax < 2||W]|, if 2][W]| <

T +7)[2 = 72(5 + ~)], then it is ensured the necessary condition of stability of a . We
\/(5 )[2 = 72(8 + )], then it d th y condition of stability of aRON. W

want to estimate what is the maximum possible value for r\/(é +7)[2 = 72(6 +v)], so that we
can impose a threshold on the norm of ||[W|| representing a necessary condition for the stability
of the aRON model. Now, r\/(é +7[2-72(6+7)] = Va(2 — @), where o = 72(5 + ). Thus,
the maximum is reached at a = 1, and it gets the value of /a(2 — a) = 1. Therefore, we get
the necessary condition |[W|| < %
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D. Details on experimental settings

E. Derivation of DFA for Gated Recurrent Unit network

We provide the update rule of DFA for all the parameters of the GRU.

T
W, «+ W, — nZ(Be Ohi1—Be®c)® (re ® (1 —r))hi
t=1

T
V.V, — nZ(Be Ohi-1 —Be®c) © (1 @ (1 —1y))af,
t=1

Wy — W, — Z W(Be® (1 —2)) % (1 —c; ®c)hy—1) ® (1 @ (1 — )T 4,

ViV, — Z (Be® (1—2))* (1 —¢; ®c)hi—1) © (ry @ (1 — 1))zl

T
We «+— W, — Z +(Be ® 1—Zt))*(1—Ct®Ct)(7“t®ht—1)T>

T
VeV, — Z +(Be ® 1—zt))*(1—ct®ct)x%p

As in the “Vanilla” RNN, all the bias vectors are updated by omitting the outer product in the
corresponding W or V update. The matrix B can also be a different random matrix for each
parameter.

F. DFA Hyperparameter search

Hyperparameters are selected based on the best performances on a validation set among
these possible values: hsizee [50,512], Ire [0.0005, 0.001,0.005,0.01], bse [10,100,256],
clip=2. The values selected by the model selection are:

1. Libras: Learning rate = 0.0005 (except for BPTT GRU: learning rate= 0.01), Hidden size
=512, Batch size = 10, Epochs= 900.

2. Strawberry: Learning rate = 0.0005 (except for BPTT GRU: learning rate= 0.005), Hidden
size = 50 (except for RNN DFA: hidden size= 512), Batch size = 10 (except for RNN DFA:
bs=100 and for RNN BPTT: bs= 256), Epochs= 300.

3. ECG200: [ Learning rate = 0.0005 (Except for DFA GRU, Ir=0.01), Hidden size = 50,
Batch size = 256, Epochs= 500.

4. ROW-MNIST: [Learning rate=0.0005 (Except for RNN DFA and GRU DFA, Ir=0.005),
Hidden size = 512 ( Except for RNN BPTT, hs= 50), Batch size = 100 (Except for RNN
BPTT, bs = 10)].

In Figure [7| we show the learning curves of the test accuracy for the datasets ECG200 and
Strawberry. The fact that the lines start at a different level is because the train, test, and
validation sets are divided randomly so the test set can be particularly imbalanced. In these
cases, the learning lines of DFA are not visibly growing. We believe that the restricted range of
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the hyperparameters prevented us to find solutions of DFA that work at best for these datasets.

G. Experiment setup for Lifelong Evolutionary Swarms

We use a population of 300 individuals and evolve the population for 200 generations on each
task. NEAT starts with one hidden neuron and 50% of active connections, initialized randomly
from a standard Gaussian distribution, and clamped between -5 and 5. NEAT adds or deletes
a node with 20% probability, and mutates a weight by adding a random value sampled from a
standard Gaussian with 80% probability.

We utilized the neat-python library (Mclntyre et al. n.d.), which implements NEAT. The full
configuration details are provided in Notably, the compatibility threshold, which
determines whether individuals belong to the same species based on genomic distance, is set
to 3. Individuals with a genomic distance below this threshold are classified within the same
species. We employed a modified sigmoidal transfer function, ¢(x) = He%, as suggested in
Kenneth O. Stanley and Risto Miikkulainen 2002l This steepened sigmoid improves precision
at extreme activations and is nearly linear in the range between -0.5 and 0.5, optimizing its
steepest ascent.

For a detailed description of all other configuration parameters, refer to the official
documentation’]

To determine the optimal regularization coefficient (\), a systematic search was conducted.
Since fitness values typically ranged between 20 and 30, we used this as a reference for the
magnitude of penalization. An initial coarse search was performed with A values of 5, 10, and
15. Based on the most promising results, we refined the search around 10 by experimenting
with values 8, 9, 11, and 12.

To visualize the impact of regularization on NEAT’s speciation mechanism, tracks
the lifespan of each species, showing when they emerge and when they go extinct. With
regularization (bottom), after the first task (200 generations) there are significantly fewer
species, and they tend to persist longer. In contrast, the standard non-regularized evolution
(top) exhibits a more dynamic speciation process, with species constantly appearing and
disappearing.

The SwarmForagingEnv iS a custom reinforcement learning environment designed for
multi-agent swarm robotics tasks, where agents collaborate to retrieve specific target boxes
in a dynamic and configurable environment. The environment supports episodic tasks and
incorporates mechanisms for simulating task changes. The environment implements standard
Gym API methods, including step and reset. Additionally, a change_task method enables
updating the target color and the set of present colors, limited to those defined during
initialization. In our experiments, each task features 2 unique colors, ensuring no overlap
with colors from other tasks. For example, during the red task, boxes are red and blue, while
during the green task, boxes are green and yellow. [Table 4] details the initialization attributes
of the class, including the values set for the experiments.

"https://neat-python.readthedocs.io/en/latest/config_file.html
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Parameter

num_hidden
initial_connection

feed_forward

compatibility_disjoint_coefficient

compatibility_weight_coefficient

conn_add_prob
conn_delete_prob
node_add_prob
node_delete_prob
activation_default
activation_options
activation.mutate_rate
bias_init-mean
bias_init_stdev
bias_replace_rate
bias_mutate_rate
bias_mutate_power
bias_max_value
bias_min_value
response_init-mean
response._init_stdev
response_replace_rate
response_mutate_rate
response_mutate_power
response_max_.value
response._min.value
weight_-max_value
weight_min_value
weight_init_mean
weight_init_stdev
weight_mutate_rate
weight_replace_rate
weight_mutate_power
enabled_default
enabled_mutate_rate
compatibility_threshold
species._fitness_func
max_stagnation
species_elitism

elitism

survival_threshold

Table 13: NEAT Configuration Parameters

Value

1
partial_direct 0.5
True
1.0
0.6
0.2
0.2
0.2
0.2
neat_sigmoid
neat_sigmoid
0.0
0.0
1.0
0.1
0.7
0.5
5.0
-5.0
1.0
0.0
0.0
0.0
0.0
5.0
-5.0
5

-5
0.0
1.0
0.8
0.1
1.0
True
0.01
3.0
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Figure 29: Lifespan of each species in evolution without regularization (top) and in evolution
with regularization (bottom).
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Table 14: SwarmForagingEnv class initialization parameters

Parameter Name Value Description
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colors Varying List of colors available for the boxes.

season_colors Varying List of colors available during a specific season.

rate_target_block 0.5 Proportion of target boxes among all boxes in the arena.

repositioning True Whether boxes are repositioned after being retrieved.

efficency_reward False Whether to reward agents for completing tasks before the
maximum steps.

see_other_agents False Whether agents can detect other agents in the arena.

boxes_in_line False Whether boxes are placed in a line streight line during
initialization.

Jaeger, Herbert (2002). Tutorial on Training Recurrent Neural Networks, Covering BPPT, RTRL,
and the “Echo State Network” Approach. Tech. rep. GMD Report 159. Fraunhofer Institute
for Autonomous Intelligent Systems.

Stanley, Kenneth O. and Risto Miikkulainen (2002). “Evolving Neural Networks through
Augmenting Topologies”. In: Evolutionary Computation 10.2, pp. 99—127.

Stanley, Kenneth Owen and Risto P. Miikkulainen (2004). “Efficient evolution of neural networks
through complexification”. AAI3143474. PhD thesis. The University of Texas at Austin.
ISBN: 0496012517.

Stanley, K.O., B.D. Bryant, and R. Miikkulainen (2005). “Real-time neuroevolution in the NERO
video game”. In: IEEE Transactions on Evolutionary Computation 9.6, pp. 653—668. DOI:
10.1109/TEVC.2005.856210.

Kashtan, Nadav, Elad Noor, and Uri Alon (2007). “Varying environments can speed up evo-
lution”. In: Proceedings of the National Academy of Sciences 104.34, pp. 13711-13716.
DOI: 10.1073/pnas . 0611630104. eprint: https://www. pnas . org/doi/pdf/10.1073/
pnas.0611630104, URL: https://www.pnas.org/doi/abs/10.1073/pnas.0611630104.

Sahin, Erol and Alan Winfield (2008). “Special issue on swarm robotics”. In: Swarm Intelligence
2.2, pp. 69-72.

Dias Daniel, Peres Sarajane and Bscaro Helton (2009). Libras Movement. UCI Machine
Learning Repository. DOI: https://doi.org/10.24432/C5GC82.

Hauert, Sabine, J-C Zufferey, and Dario Floreano (2009). “Reverse-engineering of artificially
evolved controllers for swarms of robots”. In: IEEE Congress on Evolutionary Computation,
CEC’09. IEEE. Trondheim, Norway, pp. 55-61.

LukoSeviCius, Mantas and Herbert Jaeger (Aug. 2009). “Reservoir Computing Approaches to
Recurrent Neural Network Training”. In: Computer Science Review 3.3, pp. 127—149. ISSN:
1574-0137. DOI:110.1016/j.cosrev.2009.03.005. (Visited on 04/18/2020).

Winfield, Alan FT (2009). “Towards an engineering science of robot foraging”. In: 9th
International Symposium on Distributed Autonomous Robotic Systems (DARS 2008). Ed.
by H Asama et al. Tsukuba, Japan: Springer, pp. 185—-192.

European Funded b Funded by the European Union under Grant Agreement 101070918. Views and opinions expressed are however those of the author(s)
Innovation unded by . only and do not necessarily reflect those of the European Union or European Innovation Council and SMEs Executive Agency (EISMEA). 69
Council the European Union Neither the European Union nor the granting authority can be held responsible for them.


https://doi.org/10.1109/TEVC.2005.856210
https://doi.org/10.1073/pnas.0611630104
https://www.pnas.org/doi/pdf/10.1073/pnas.0611630104
https://www.pnas.org/doi/pdf/10.1073/pnas.0611630104
https://www.pnas.org/doi/abs/10.1073/pnas.0611630104
https://doi.org/10.1016/j.cosrev.2009.03.005

WP4 ‘Semm -— -
D4.2 First version of the ADS : M = R G =

Lehman, Joel and Kenneth O. Stanley (June 2011). “Improving Evolvability through Novelty
Search and Self-Adaptation”. In: 2011 IEEE Congress of Evolutionary Computation (CEC).
New Orleans, LA, USA: IEEE, pp. 2693—2700. ISBN: 978-1-4244-7834-7. DOI:|10.1109/
CEC.2011.5949955. (Visited on 03/18/2024).

Deng, Li (2012). “The mnist database of handwritten digit images for machine learning
research”. In: IEEE Signal Processing Magazine 29.6, pp. 141-142.

Yildiz, Izzet B, Herbert Jaeger, and Stefan J Kiebel (2012). “Re-visiting the echo state
property”. In: Neural networks 35, pp. 1-9.

Cho, Kyunghyun et al. (Oct. 2014). “On the Properties of Neural Machine Translation:
Encoder-Decoder Approaches”. In: Proceedings of SSST-8, Eighth Workshop on
Syntax, Semantics and Structure in Statistical Translation. Doha, Qatar: Association for
Computational Linguistics, pp. 103—111. DOI: [10 . 3115 / v1 / W14 - 4012. (Visited on
09/21/2019).

Chung, Junyoung et al. (Dec. 2014). Empirical Evaluation of Gated Recurrent Neural Networks
on Sequence Modeling. arXiv:|1412.3555 [cs]. (Visited on 09/05/2022).

Yao, Yao, Kathleen Marchal, and Yves Van de Peer (2014). “Improving the adaptability of
simulated evolutionary swarm robots in dynamically changing environments”. In: PLoS
One 9.3, €90695.

Ellefsen, Kai Olav, Jean-Baptiste Mouret, and Jeff Clune (Apr. 2015). “Neural Modularity
Helps Organisms Evolve to Learn New Skills without Forgetting Old Skills”. In: PLOS
Computational Biology 11.4, pp. 1-24. DOI: 10 . 1371/ journal . pcbi . 1004128. URL:
https://doi.org/10.1371/journal.pcbi.1004128.

Hecker, Joshua P. and Melanie E. Moses (Mar. 2015). “Beyond pheromones: evolving
error-tolerant, flexible, and scalable ant-inspired robot swarms”. In: Swarm Intelligence
9.1, pp. 43-70. ISSN: 1935-3820. DOI: |10 . 1007 /s11721-015- 0104 - z. URL: https :
//doi.org/10.1007/s11721-015-0104-z.

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton (May 2015). “Deep Learning”. In: Nature
521.7553, pp. 436—444. ISSN: 1476-4687. DOI: 10 . 1038 / nature14539. (Visited on
09/03/2019).

Mouret, Jean-Baptiste and Jeff Clune (Apr. 2015). llluminating Search Spaces by Mapping
Elites. arXiv: 1504.04909 [cs, g-bio]. (Visited on 08/05/2024).

Silva, Fernando et al. (Sept. 2015). “odNEAT: An Algorithm for Decentralised Online Evolution
of Robotic Controllers”. In: Evolutionary Computation 23.3, pp. 421-449. ISSN: 1063-6560.
DOI: 10.1162/EVC0_a_00141. eprint: https://direct.mit.edu/evco/article-pdf/23/
3/421/1518622/evco\_a\_00141.pdf. URL: https://doi.org/10.1162/EVC0%5C_a%5C_
00141.

Castello, Eduardo et al. (2016). “Adaptive foraging for simulated and real robotic swarms: the
dynamical response threshold approach”. In: Swarm Intelligence 10, pp. 1-31.

Francesca, Gianpiero and Mauro Birattari (2016). “Automatic Design of Robot Swarms:
Achievements and Challenges”. In: Frontiers in Robotics and Al 3, p. 29.

Fricke, G. Matthew et al. (2016). “A distributed deterministic spiral search algorithm for
swarms”. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 4430—4436. DOI:[10.1109/IR0S.2016.7759652.

Lillicrap, Timothy P., Daniel Cownden, et al. (Nov. 2016). “Random Synaptic Feedback Weights
Support Error Backpropagation for Deep Learning”. In: Nature Communications 7.1, pp. 1—
10. ISSN: 2041-17283. DOI: 10.1038/ncomms13276. (Visited on 04/19/2020).

Mengistu, Henok, Joel Lehman, and Jeff Clune (July 2016). “Evolvability Search: Directly
Selecting for Evolvability in Order to Study and Produce It”. In: Proceedings of the
Genetic and Evolutionary Computation Conference 2016. GECCO ’'16. New York, NY,
USA: Association for Computing Machinery, pp. 141-148. ISBN: 978-1-4503-4206-3. DOI:
10.1145/2908812.2908838. (Visited on 03/17/2024).

Innovation only and do not necessarily reflect those of the European Union or European Innovation Council and SMEs Executive Agency (EISMEA). 70

European Funded by Funded by the European Union under Grant Agreement 101070918. Views and opinions expressed are however those of the author(s)
Council the European Union Neither the European Union nor the granting authority can be held responsible for them.


https://doi.org/10.1109/CEC.2011.5949955
https://doi.org/10.1109/CEC.2011.5949955
https://doi.org/10.3115/v1/W14-4012
https://arxiv.org/abs/1412.3555
https://doi.org/10.1371/journal.pcbi.1004128
https://doi.org/10.1371/journal.pcbi.1004128
https://doi.org/10.1007/s11721-015-0104-z
https://doi.org/10.1007/s11721-015-0104-z
https://doi.org/10.1007/s11721-015-0104-z
https://doi.org/10.1038/nature14539
https://arxiv.org/abs/1504.04909
https://doi.org/10.1162/EVCO_a_00141
https://direct.mit.edu/evco/article-pdf/23/3/421/1518622/evco\_a\_00141.pdf
https://direct.mit.edu/evco/article-pdf/23/3/421/1518622/evco\_a\_00141.pdf
https://doi.org/10.1162/EVCO%5C_a%5C_00141
https://doi.org/10.1162/EVCO%5C_a%5C_00141
https://doi.org/10.1109/IROS.2016.7759652
https://doi.org/10.1038/ncomms13276
https://doi.org/10.1145/2908812.2908838

WP4 ‘Semm -— -
D4.2 First version of the ADS : M = R G =

Nokland, Arild (2016). “Direct Feedback Alignment Provides Learning in Deep Neural
Networks”. In: Advances in Neural Information Processing Systems 29. Ed. by D. D. Lee
et al. Curran Associates, Inc., pp. 1037-1045.

Pugh, Justin K., Lisa B. Soros, and Kenneth O. Stanley (July 2016). “Quality Diversity: A New
Frontier for Evolutionary Computation”. In: Frontiers in Robotics and Al 3. 1SSN: 2296-9144.
DOI:|10.3389/frobt.2016.00040. (Visited on 03/15/2024).

Chang, Shiyu et al. (2017). “Dilated recurrent neural networks”. In: Advances in neural
information processing systems 30.

Ericksen, John, Melanie Moses, and Stephanie Forrest (2017). “Automatically evolving a
general controller for robot swarms”. In: 2017 IEEE Symposium Series on Computational
Intelligence (SSCI), pp. 1-8. DOI:|10.1109/SSCI.2017.8285399.

Gallicchio, Claudio and Alessio Micheli (2017). “Echo state property of deep reservoir
computing networks”. In: Cognitive Computation 9, pp. 337—350.

Inubushi, Masanobu and Kazuyuki Yoshimura (2017). “Reservoir computing beyond memory-
nonlinearity trade-off”. In: Scientific reports 7.1, p. 10199.

Kirkpatrick, James et al. (Mar. 2017). “Overcoming Catastrophic Forgetting in Neural
Networks”. In: Proceedings of the National Academy of Sciences 114.13, pp. 3521-3526.
DOI:/10.1073/pnas. 1611835114, (Visited on 11/22/2022).

Lake, Brenden M et al. (2017). “Building machines that learn and think like people”. In:
Behavioral and brain sciences 40, e253.

Scellier, Benjamin and Yoshua Bengio (2017). “Equilibrium Propagation: Bridging the Gap
between Energy-Based Models and Backpropagation”. In: Frontiers in Computational
Neuroscience 11. 1SSN: 1662-5188. (Visited on 11/16/2023).

Vaswani, Ashish et al. (2017). “Attention is all you need”. In: Advances in neural information
processing systems 30.

Zenke, Friedemann, Ben Poole, and Surya Ganguli (July 2017). “Continual Learning Through
Synaptic Intelligence”. In: International Conference on Machine Learning, pp. 3987-3995.
(Visited on 06/28/2019).

Bredeche, Nicolas, Evert Haasdijk, and Abraham Prieto (2018). “Embodied Evolution in
Collective Robotics: A Review”. In: Frontiers in Robotics and Al 5, p. 12.

Chaudhry, Arslan et al. (2018). “Riemannian Walk for Incremental Learning: Understanding
Forgetting and Intransigence”. In: Computer Vision — ECCV 2018. Ed. by Vittorio Ferrari et
al. Lecture Notes in Computer Science. Cham: Springer International Publishing, pp. 556—
572. 1SBN: 978-3-030-01252-6. DOI:[10.1007/978-3-030-01252-6_33|.

Birattari, Mauro et al. (2019). “Automatic Off-Line Design of Robot Swarms: A Manifesto”. In:
Frontiers in Robotics and Al 6, p. 59.

Chang, Bo et al. (2019). “AntisymmetricRNN: A dynamical system view on recurrent neural
networks”. In: arXiv preprint arXiv:1902.09689.

Crafton, Brian et al. (May 2019). “Direct Feedback Alignment With Sparse Connections for
Local Learning”. In: Frontiers in Neuroscience 13. ISSN: 1662-453X. DOI:/10.3389/fnins.
2019.00525. (Visited on 09/04/2024).

Ernoult, Maxence et al. (2019). “Updates of Equilibrium Prop Match Gradients of Backprop
Through Time in an RNN with Static Input”. In: Advances in Neural Information Processing
Systems. Vol. 32. Curran Associates, Inc. (Visited on 01/26/2024).

Goyal, Anirudh et al. (2019). “Recurrent independent mechanisms”. In: arXiv:1909.10893.

Jones, Simon, Alan FT Winfield, et al. (2019). “Onboard Evolution of Understandable Swarm
Behaviors”. In: Advanced Intelligent Systems 1.

Parisi, German I. et al. (May 2019). “Continual Lifelong Learning with Neural Networks: A
Review”. In: Neural Networks 113, pp. 54—71. 1SSN: 0893-6080. DOI: 10.1016/j.neunet.
2019.01.012. (Visited on 12/28/2019).

European Funded b Funded by the European Union under Grant Agreement 101070918. Views and opinions expressed are however those of the author(s)
Innovation unded by . only and do not necessarily reflect those of the European Union or European Innovation Council and SMEs Executive Agency (EISMEA). 7 1
Council the European Union Neither the European Union nor the granting authority can be held responsible for them.


https://doi.org/10.3389/frobt.2016.00040
https://doi.org/10.1109/SSCI.2017.8285399
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1007/978-3-030-01252-6_33
https://doi.org/10.3389/fnins.2019.00525
https://doi.org/10.3389/fnins.2019.00525
https://doi.org/10.1016/j.neunet.2019.01.012
https://doi.org/10.1016/j.neunet.2019.01.012

WP4 ‘Semm -— -
D4.2 First version of the ADS : M = R G =

Paszke, Adam et al. (2019). “PyTorch: An Imperative Style, High-Performance Deep Learning
Library”. In: Advances in Neural Information Processing Systems. Vol. 32. Curran
Associates, Inc.

Han, Donghyeon et al. (June 2020). Extension of Direct Feedback Alignment to Convolutional
and Recurrent Neural Network for Bio-plausible Deep Learning. DOI: 10 . 48550/ arXiv .
2006.12830. arXiv:|2006.12830 [cs, stat]. (Visited on 08/28/2024).

Launay, Julien et al. (Dec. 2020). Hardware Beyond Backpropagation: A Photonic
Co-Processor for Direct Feedback Alignment. DOI: 10 .48550/arXiv.2012.06373. arXiv:
2012.06373 [cs, stat]. (Visited on 09/04/2024).

Lesort, Timothée et al. (June 2020). “Continual Learning for Robotics: Definition, Framework,
Learning Strategies, Opportunities and Challenges”. In: Information Fusion 58, pp. 52—68.
ISSN: 1566-2535. DOI:'10.1016/j.inffus.2019.12.004. (Visited on 05/06/2020).

Lillicrap, Timothy P., Adam Santoro, et al. (Apr. 2020). “Backpropagation and the Brain”. In:
Nature Reviews Neuroscience, pp. 1-12. ISSN: 1471-0048. DOI: 10.1038/s41583-020~
0277-3. (Visited on 04/18/2020).

Schranz, Melanie et al. (2020). “Swarm Robotic Behaviors and Current Applications”. In:
Frontiers in Robotics and Al 7, p. 36.

Cossu, Andrea, Davide Bacciu, et al. (2021). “Continual Learning with Echo State Networks”.
In: ESANN 2021 Proceedings. Online event (Bruges, Belgium): Ciaco - i6doc.com,
pp. 275—-280. ISBN: 978-2-87587-082-7. DOI:|10.14428/esann/2021.ES2021-80. (Visited
on 12/19/2023).

Dorigo, Marco, Guy Theraulaz, and Vito Trianni (2021). “Swarm robotics: Past, present, and
future [point of view]”. In: Proceedings of the IEEE 109.7, pp. 1152—1165.

Hayes, Tyler L. et al. (Oct. 2021). “Replay in Deep Learning: Current Approaches and Missing
Biological Elements”. In: Neural computation 33.11, pp. 2908-2950. ISSN: 0899-7667. DOI:
10.1162/neco_a_01433. (Visited on 08/30/2023).

Cossu, Andrea, Gabriele Graffieti, et al. (2022). “Is Class-Incremental Enough for Continual
Learning?” In: Frontiers in Artificial Intelligence 5. 1SSN: 2624-8212. DOI: 10.3389/frai .
2022.829842. (Visited on 03/24/2022).

Filipovich, Matthew J. et al. (Dec. 2022). “Silicon Photonic Architecture for Training Deep Neural
Networks with Direct Feedback Alignment”. In: Optica 9.12, pp. 1323-1332. ISSN: 2334-
2536. DOI:|10.1364/0PTICA.475493. (Visited on 09/04/2024).

Jones, Simon, Emma Milner, et al. (2022). DOTS: An Open Testbed for Industrial Swarm
Robotic Solutions. arXiv: 2203 . 13809 [cs.RO]. URL: https://arxiv.org/abs/2203.
13809.

Khetarpal, Khimya et al. (2022). “Towards Continual Reinforcement Learning: A Review and
Perspectives”. In: Journal of Artificial Intelligence Research 75, pp. 1401-1476. I1SSN:
1076-9757. DOI:|10.1613/jair.1.13673.

Kozachkov, Leo, Michaela Ennis, and Jean-Jacques Slotine (2022). “RNNs of RNNs: Recursive
construction of stable assemblies of recurrent neural networks”. In: Advances in neural
information processing systems 35, pp. 30512-30527.

Merlin, G. et al. (2022). “Practical Recommendations for Replay-Based Continual Learning
Methods”. In: Lecture Notes in Computer Science (including subseries Lecture Notes in
Atrtificial Intelligence and Lecture Notes in Bioinformatics) 13374 LNCS, pp. 548—-559. ISSN:
0302-9743. DOI:|10.1007/978-3-031-13324-4_A47.

Nakajima, Mitsumasa et al. (Dec. 2022). “Physical Deep Learning with Biologically
Inspired Training Method: Gradient-Free Approach for Physical Hardware”. In: Nature
Communications 13.1, p. 7847. ISSN: 2041-1723. DOI: [10.1038/s41467-022-35216-2.
(Visited on 08/28/2024).

European Funded b Funded by the European Union under Grant Agreement 101070918. Views and opinions expressed are however those of the author(s)
Innovation unded by . only and do not necessarily reflect those of the European Union or European Innovation Council and SMEs Executive Agency (EISMEA). 72
Council the European Union Neither the European Union nor the granting authority can be held responsible for them.


https://doi.org/10.48550/arXiv.2006.12830
https://doi.org/10.48550/arXiv.2006.12830
https://arxiv.org/abs/2006.12830
https://doi.org/10.48550/arXiv.2012.06373
https://arxiv.org/abs/2012.06373
https://doi.org/10.1016/j.inffus.2019.12.004
https://doi.org/10.1038/s41583-020-0277-3
https://doi.org/10.1038/s41583-020-0277-3
https://doi.org/10.14428/esann/2021.ES2021-80
https://doi.org/10.1162/neco_a_01433
https://doi.org/10.3389/frai.2022.829842
https://doi.org/10.3389/frai.2022.829842
https://doi.org/10.1364/OPTICA.475493
https://arxiv.org/abs/2203.13809
https://arxiv.org/abs/2203.13809
https://arxiv.org/abs/2203.13809
https://doi.org/10.1613/jair.1.13673
https://doi.org/10.1007/978-3-031-13324-4_47
https://doi.org/10.1038/s41467-022-35216-2

WP4 ‘Semm -— -
D4.2 First version of the ADS : M = R G =

Wright, Logan G. et al. (Jan. 2022). “Deep Physical Neural Networks Trained with
Backpropagation”. In: Nature 601.7894, pp. 549-555. ISSN: 1476-4687. DOI: |10 . 1038/
541586-021-04223-6. (Visited on 08/29/2024).

Hemati, Hamed et al. (Nov. 2023). “Class-Incremental Learning with Repetition”. In:
Proceedings of The 2nd Conference on Lifelong Learning Agents. PMLR, pp. 437-455.
(Visited on 12/19/2023).

Masana, Marc et al. (May 2023). “Class-Incremental Learning: Survey and Performance
Evaluation on Image Classification”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 45.5, pp. 5513-5533. ISSN: 1939-3539. DOI: 10.1109/TPAMI . 2022.
3213473. (Visited on 06/06/2024).

Momeni, Ali et al. (Dec. 2023). “Backpropagation-Free Training of Deep Physical Neural
Networks”. In: Science 382.6676, pp. 1297—1303. DOI: 10 . 1126 / science . adi8474.
(Visited on 08/29/2024).

Giannini, Federico et al. (2024). “Streaming Continual Learning for Unified Adaptive
Intelligence in Dynamic Environments”. In: IEEE Intelligent Systems 39.6, pp. 81-85. ISSN:
1941-1294. DOI:[10.1109/MIS.2024.3479469.

Sinha, Sania, Tanawan Premsri, and Parisa Kordjamshidi (2024). “A Survey on Compositional
Learning of Al Models: Theoretical and Experimetnal Practices”. In: arXiv preprint
arXiv:2406.08787.

Towers, Mark et al. (Nov. 2024). Gymnasium: A Standard Interface for Reinforcement Learning
Environments. DOI: 10 .48550/arXiv. 2407 .17032. arXiv: 2407 .17032 [cs]. (Visited on
01/09/2025).

Verwimp, Eli et al. (2024). “Continual Learning: Applications and the Road Forward”. In:
Transactions on Machine Learning Research. ISSN: 2835-8856.

K. Kemsley, A. Bagnall (n.d.). Strawberry. https://timeseriesclassification.com.

Mclntyre, Alan et al. (n.d.). neat-python. URL: https://neat-python.readthedocs.io/en/
latest/.

European Funded b Funded by the European Union under Grant Agreement 101070918. Views and opinions expressed are however those of the author(s)
Innovation unced by only and do not necessarily reflect those of the European Union or European Innovation Council and SMEs Executive Agency (EISMEA). 73

Council the European Union Neither the European Union nor the granting authority can be held responsible for them.


https://doi.org/10.1038/s41586-021-04223-6
https://doi.org/10.1038/s41586-021-04223-6
https://doi.org/10.1109/TPAMI.2022.3213473
https://doi.org/10.1109/TPAMI.2022.3213473
https://doi.org/10.1126/science.adi8474
https://doi.org/10.1109/MIS.2024.3479469
https://doi.org/10.48550/arXiv.2407.17032
https://arxiv.org/abs/2407.17032
https://neat-python.readthedocs.io/en/latest/
https://neat-python.readthedocs.io/en/latest/

	Document control
	Version control
	Abstract
	Consortium
	Disclaimer
	Acknowledgement
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Executive Summary
	Introduction
	Anti-symmetric Random Oscillator Networks
	The aRON model
	Necessary condition for stability of aRON
	Experiments
	Physically implementable and Antisymmetric Random Oscillator Networks

	Integrating Random Oscillator Networks with spiking archetypes
	The S-RON model
	Preliminary Results and Future Directions for S-RON

	Learning via Feedback Alignment
	Related works
	DFA for feedforward networks
	DFA for recurrent networks
	Experiments

	Learning via Equilibrium Propagation
	Life-long evolutionary swarms
	Background
	An Environment for the Lifelong Evolution of Swarms
	Environment Setup

	Lifelong Neuroevolution of Swarm Controllers
	Experiments
	Quick Adaptability
	Forgetting in the population
	Forgetting in the individuals
	Stress tests on the population


	Preliminary results on training modular ensembles of RNNs
	The framework of a collective of RNNs coupled in negative-feedback
	Advancements on trainable RNNs of RNNs

	Integrating attention into reservoir-based assemblies
	Experiments


	Preliminary results on awareness through a modular composition of RNNs
	Temporal awareness in RNNs
	Experiments

	Spatial awareness in RNNs
	Experiments


	Software library
	Conclusions
	Proof of Proposition 1
	Proof of Theorem 1
	Proof of Proposition 2
	Details on experimental settings
	Derivation of DFA for Gated Recurrent Unit network
	DFA Hyperparameter search
	Experiment setup for Lifelong Evolutionary Swarms

