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We also introduce our early results on networks of archetype-

inspired neural systems, leveraging novel neural-inspired units’ 

connectors, and our preliminary analysis on lifelong learning. 

Finally, we introduce the software framework for the ACS. 
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Abstract 

This document introduces the first version of the Archetype Computing System (ACS), a 

computational framework that employs archetypes to facilitate computation implemented via 

dynamical systems, embodying a novel computational paradigm where intelligence and 

awareness emerge from the complex interplay of minimal, dynamically interacting units, 

mirroring the adaptability and emergent properties akin to neural processes in biological 

systems. This initial iteration of ACS is grounded in the principles of designing novel intelligent 

information processing units, paving the way to life-long and evolutionary adaptation, and 

including early results on networks and connectors. 

The core of the document elaborates on the introduction of Random Oscillators Networks 

(RON) a novel computational model inspired by the physical behaviour of oscillator archetypes 

(D3.1, Sections 1.2 and 1.3). RON provides an innovative strategy for creating efficiently 

trainable recurrent neural networks in the field of deep learning, marking a significant shift from 

traditional design approaches. 

We show the fundamental principles of information processing via RON systems, both in 

theory and in benchmarking applications, highlighting the natural ability of RON to effectively 

propagate information on long temporal ranges, and the exceptional trade-off between 

predictive performance and cost of training.  

The document presents an exhaustive overview of the state-of-the-art techniques in related 

deep learning areas, including Reservoir Computing, Physics-inspired Neural Networks, and 

alternative learning strategies that circumvent the limitations of traditional backpropagation 

algorithms. Furthermore, this deliverable presents a detailed account of the preliminary results 

obtained from implementing Euler State Networks, Residual Recurrent Neural Networks, and 

Continuously Deep Recurrent Neural Networks. It also examines the application of relevant 

neural architectures in scenarios requiring lifelong learning capabilities, showcasing their 

potential in recalibration and rejection learning tasks. 

Finally, this document introduces the preliminary version of the ACS Python library, which is 

made publicly available4. 
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4 https://github.com/EU-EMERGE/archetype-computing-adaptive-system 

https://github.com/EU-EMERGE/archetype-computing-adaptive-system
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1. Introduction 

Within the EMERGE project, Work Package 4 (WP4), titled "Learning and Evolutionary 

Awareness - Adaptive Non-linear Dynamical Systems for Awareness”, seeks to advance the 

development of adaptive computing systems based on the archetypes concepts. This is done 

by conceptualizing and implementing an Archetype Computing System (ACS) alongside an 

Archetypes Adapting System (ADS), which are fundamentally engineered to leverage neural-

inspired dynamics for computation. 

The Archetypes units, connectors, and networks introduced in D3.1 provide a (yet to be 

completed) list of non-linear dynamical systems from the combination of which we expect the 

emergence of high-level representations of the self, the collective, and the environment. All 

the Archetypes of D3.1 are defined by a rigorous mathematical language that fully 

characterizes their behaviour. The mathematical language of the Archetypes enables their 

implementation by means of other “languages”, like the analogical language of the physical 

world, for example through mechanical/soft robots and swarms. 

The ACS introduced in this deliverable is a computational framework that allows to implement 

the Archetypes from D3.1 through the language of artificial deep neural networks. We find 

artificial neural networks to be a convenient and flexible tool to realize Archetypes, due to their 

ability of modelling complex non-linear dynamical systems through the composition of simple 

entities. This allows us to use Archetypes to compute and to process input signals. The 

objective is to enable a new class of computational systems capable of adapting their 

processing capabilities in response to environmental changes. The elements in the ACS are 

anticipated to exhibit emergent behaviours and facilitate efficient information processing 

across various scales. 

Due to the different languages used to define the Archetypes (mathematical models) and the 

ACS (artificial neural networks) this deliverable intentionally uses a different notation with 

respect to D3.1. This choice allows us to distinguish the Archetypes from their implementation 

in the ACS. In particular, with respect to D3.1, we denote the external input with 𝒖 instead of 

𝒗, and the (hidden) state of the system with 𝒉 instead of 𝒚. Moreover, whenever needed by 

the involved computational scheme, we use discretization of continuous time dynamics by 

means of Euler methods. 

The ADS further extends the ACS by endowing its computational elements with the ability to 

adapt and learn through lifelong and evolutionary learning algorithms. 

In this deliverable, we focus on oscillator units that are both harmonic and multistable, 

described in D3.1, respectively in Sections 1.2 and 1.3. We also consider the neuron-like 

connector from D3.1, Section 2.2, as it can be easily employed in artificial neural networks 

models, like the ones in the ACS. Section 2 of this deliverable describes how the neuron-like 

connector can be used in artificial neural network models by providing examples from existing 

architectures. The novel Random Oscillators Network (RON) Archetype network, introduced 

in Section 3 of this deliverable, leverages the harmonic oscillator unit and the neuron-like 

connector. The resulting Archetype network is the ACS version of the Archetype network 

described in D3.1, Section 3.2. Moreover, Section 3.5 in this deliverable is dedicated to 

preliminary stability results on the Archetype network composed of multistable oscillator units 

coupled with the hyperbolic potential coupling connector, as explained in D3.1, Section 3.1. In 

Section 4 of this deliverable, we report further preliminary results on artificial neural network 

models based on linear units coupled with variations of the neuron-like connector that account 
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for skew-symmetric coupling of the units in the network (Section 4.1), augmented with residual 

connections (Section 4.2), an encode local connectivity patterns between units (Section 4.3). 

Overall, this deliverable, D4.1, introduces a first version of the ACS, delineating its theoretical 

underpinnings, architectural design, and initial outcomes. It emphasizes the role of RON and 

other innovative neural models in achieving the project's goals. Moreover, this deliverable 

discusses the initial steps toward developing a Python library for the ACS and ADS, intending 

to facilitate its application and further development. Although this document is primarily 

focused on the development and study of new neural models based on archetype units, we 

are able to anticipate some relevant preliminary findings on learning strategies in the context 

of lifelong learning. 

This document is structured into several sections, as described below. 

• Section 2, "State-of-the-Art," offers an in-depth analysis of the current advancements 

and theoretical foundations in artificial intelligence (AI) and machine learning (ML) that 

are key to the development of the ACS and the ADS. It provides an overview of 

Reservoir Computing, Physics-inspired Neural Networks, and non-traditional learning 

algorithms that surpass backpropagation in efficiency and adaptability. This section 

situates the work conducted in WP4 within the related AI research landscape, 

highlighting how these cutting-edge concepts and methodologies inform the design 

and implementation of adaptive, evolutionary-aware computing systems. 

• Section 3, "Random Oscillators Networks," details the conceptualization, 

implementation, and initial findings related to Random Oscillators Networks (RON) 

within the framework of the EMERGE project. This section delves into the theoretical 

underpinnings and practical applications of RON as a novel neural model inspired by 

the dynamic behaviour of oscillators. It is in this regard important to note that the RON 

model represents the first neural network based on neurons whose behaviour is 

directly following the oscillator archetypes analysed in synergy with WP3 activities and 

described in D3.1, Section 1. 
The content of Section 3 is mostly based on the following papers: [1] and [2], which 

present the fundamental concepts of the RON model, the theoretical analysis, and the 

experimental assessment [3]; which introduces the analysis of the sparse topologies 

for physical implementations. 

• Section 4, "Preliminary Results on Archetype Networks," offers insights into the initial 

achievements in modelling Archetype Networks using neuron-like connectors. It 

explores the broader concept of integrating neural-inspired architectures for enhancing 

the system's computational and adaptive learning capabilities. Specifically, the section 

delves into the properties and the performances of Euler State Networks (published in 

[4]), Residual Recurrent Neural Networks (with preliminary concepts published in [5]), 

and Continuously Deep Recurrent Neural Networks (preliminarily described in [6]). 

• Section 5, "Preliminary analysis on the Archetype Adapting System" presents our early 

results on the development and analysis of ADS methodologies. It focuses on two key 

aspects: learning to reject and calibration, exploring how these mechanisms enhance 

the neural system's ability to adapt and evolve over time. The calibration study is based 

on [7].  

• Section 6, "Software Framework: Design Considerations of the ACDS Python Library," 

outlines the development and architectural choices behind the ACS/ADS Python 

library, a key component for facilitating the exploration and application of the 

methodologies developed within WP4. It discusses the library's modular design, 

intended to provide researchers and practitioners with a flexible tool for implementing 
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and testing various configurations of the ACS. This section highlights the library's 

components, their functionalities, and how they collectively support the 

operationalization of the ACS for further research and practical applications. 

• Section 7 presents some conclusion remarks for the deliverable. 

• Beyond the main content, Sections 8 and 9 provide further details on the proof of the 

main mathematical results and experimental settings, respectively.  
 

2. State of the art 

This section provides an overview on the current state-of-the-art on AI research that falls within 

the scopes of WP4 in the project. The aim is to frame the ground for the technical content 

presented in the following sections of this document. More specifically, Section 2.1 introduces 

the fundamental concepts of Reservoir Computing, Section 2.2 provides an overview on 

physics-inspired design of neural networks architectures, with a focus on neural systems 

based on oscillators, and Section 2.3 presents the fundamental concepts around bio-inspired 

learning algorithms that are alternatives to backpropagation. 

2.1. Reservoir Computing 

Recurrent neural networks (RNNs) [8] are computational models designed to extract features 

from data with temporal structures. Applications ranges from speech recognition to 

classification of time series. The most common way of training RNNs is via stochastic gradient 

descent methods, usually via the backpropagation through-time algorithm [9]. Unfortunately, 

these methods come with a significant computational effort. Modern hardware unleashed the 

power of parallel computing techniques, allowing to reduce the computational time of training 

deep learning models as RNNs. However, the price to pay is a massive energy consumption. 

Moreover, a fundamental limitation of theoretical nature prevents RNNs to be fully exploited, 

namely the vanishing/exploding (V/E) gradient issue [10]. In this regard, an appealing 

alternative is represented by Reservoir Computing (RC) [11], [12], a different paradigm of 

training RNNs dodging the V/E while being computationally fast, and energy efficient. The 

flexibility of the RC paradigm offers a suitable theoretical framework for computing with 

physical substrates [13], [14], [15], [16], for fast and scalable graph neural networks models 

[17], [18], and for implementing digital twins of real-world nonlinear dynamical systems [19].  

The key idea of RC is to inject the input signal into a large random untrained recurrent layer, 

the reservoir. The reservoir provides a high dimensional and heterogeneous set of activations. 

Hence, this set is used as input for a readout layer which is optimised to fit the desired target 

signal. The Echo State Network (ESN) [20], [21] provides a popular discrete-time class of RC 

machines. The name ESN recalls the imagery of the input signal echoing and reverberating 

within the pool of neuronal activations in the reservoir, which in turn serves as a high-

dimensional representation of the past history of the input. Although gradients are not 

backpropagated in the RC paradigm, the ESN's forward dynamics are ruled by the very same 

equation of conventional RNNs.  

Thus, ESNs inherit a problem which closely relates to the V/E gradient problem of plain RNNs, 

namely the degradation of memory [22]. As revealed by previous studies [23], [24], the 

degradation of memory is linked to the nonlinearity of the system in an inherent trade-off. 

Nonlinear computation and short-term memory are two fundamental aspects of neural 

systems. Therefore, the existence of a trade-off between them compels to design nonlinear 
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RC systems able to retain as much memory as possible. In fact, the memory capacity is a key 

feature to reach desirable results in certain learning tasks [25].  

As a fundamental baseline, we introduce the Echo State Network (ESN) model, which in its 

vanilla formulation includes a fixed non-linear reservoir layer and a trainable readout. We 

consider, in particular, the general case with leaky-integrator recurrent neurons [26]. The 

state transition equation of the reservoir is given as follows: 

𝐡(𝑡) = (1 − 𝜏)𝐡(𝑡 − 1) + 𝜏𝜙(𝐖𝐡𝐡(𝑡 − 1) + 𝐖𝐮𝐮(𝑡) + 𝐛), (1) 

where 𝐲(𝑡) ∈ ℝ𝑁h and 𝐮(𝑡) ∈ ℝ𝑁𝑥 respectively denote the state and input at time 𝑡,𝐖𝐡 ∈

ℝ𝑁h×𝑁h and 𝐖𝐮 ∈ ℝ𝑁𝑥×𝑁ℎ are the reservoir and the input weight matrices, 𝐛 ∈ ℝ𝑁ℎ is the bias 

vector, 𝜙(−) is an element-wise applied non-linearity (we use tanh⁡(⋅)), and 𝜏 ∈ (0,1] is a 

leakage hyperparameter. The reservoir is typically initialized in the origin, i.e., 𝐡(0) = 𝟎. The 

values in 𝐖h are randomly chosen and then re-scaled to have a specific value of the spectral 

radius (i.e., the maximum length of an eigenvalue), a crucial hyperparameter denoted as 𝜌.𝐖𝐮 

and 𝐛 are randomly initialized from uniform distributions over (−𝜔𝑥, 𝜔𝑥), and (−𝜔𝑏, 𝜔𝑏), where 

𝜔𝑥 and 𝜔𝑏 act respectively as input and bias scaling hyperparameters. The value of 𝜌 is 

important as it practically determines the dynamic regime of the reservoir layer, and in 

applications it is often controlled to values not exceeding too much 1. 

The ESN architecture also comprises a tunable readout layer, which is typically linear and 

trained in closed-form by ridge regression. This efficient design, where only the readout layer 

is trainable, contrasts with fully trainable systems and contributes to the computational 

advantages of ESNs and RC in general, including simplified and fast training [3], [13], as well 

as physical implementability in neuromorphic substrates [14]. For time series classification 

problems, the reservoir is run on each input sequence, and the state calculated for the last 

time step is used to feed the readout classifier. 

ESNs work under the foundational Echo State Property (ESP). An ESN with the ESP, when 

driven by an input signal, will become entrained by the input and develop a unique internal 

response signal. Such an internal response is a high-dimensional, nonlinear, unique transform 

of the input with memory content on top of which we perform regression or classification based 

on the specific task at hand. This property is crucial for the design and training of RNNs as it 

ensures that the network's response to inputs is stable, making it possible to train the network 

to produce desired outputs. The easiest condition to ensure the ESP is to set a reservoir such 

that the following condition holds: 

∥∥𝐖h∥∥ < 1, 

where ∥∥𝐖𝐡∥∥ denotes the matrix norm induced by the Euclidean norm in ℝ𝑁ℎ, or equivalently 

the maximum singular value of 𝐖h. For the rest of this document, we will always use ∥⋅∥ to 

denote the matrix norm induced by the Euclidean norm on ℝ𝑁𝑏.  

In coarse terms, the ESP guarantees the ESN to possess a unique input-driven solution such 

that all the trajectories originating from different initial conditions (in the infinite past) 

synchronise with it (in present time). Following the imagery, such a unique input-driven 

solution would represent the echo of the input signal from the infinite past. An ESN such that 

∥∥𝐖h∥∥ < 1 is characterised by straight contraction in the phase space at each time step. 

Therefore, any two different internal states of the RNN, when driven by the same input 

sequence, will get closer and closer to each other as time flows ahead. Although stable, such 
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a dynamical system risks to have little margin to exploit the transient dynamics for 

computational purposes, if the contraction is too strong. An ideal situation would be for the 

RNN to stay in a regime of balance between stable contractive dynamics and unstable chaotic 

dynamics, i.e. along the edge of chaos [27], [28]. This led the RC community to adopt the rule 

of thumb of setting the reservoir matrix to have spectral radius approximately one [20], [29], 

[30]. Thus, in the RC literature, when introducing a new model, it is common practice to study 

the eigenspectrum of the model to get insights on the stability properties. For continuous-time 

models, the stability region for the zero-input case is represented by the left complex plane, 

i.e. all eigenvalues with non-positive real parts. While for discrete-time models, the stability 

region for the zero-input case is represented by the unitary disk, i.e. all eigenvalues with 

modulus not greater than 1. Hence, the edge of stability results the imaginary axis, for 

continuous-time models, and the unit complex circle, for discrete-time models.  

 

2.2. Physics-inspired Neural Networks 

Neural networks have been proved to be universal approximators [31]. However, the space of 
possible functions is so vast that usually the optimisation procedure ends in a sub-optimal 
solution of the problem. Constraining the problem often makes easier to find more educated 

guesses and so better solutions. In recent years, physics-inspired neural network (PINN) have 

emerged as a potential solution to address the challenges faced by traditional neural networks 
[32]. These architectures draw inspiration from the principles and laws of physics, utilising 
concepts such as conservation laws, symmetries, and local interactions to improve network 
performance. These novel approaches aim to enhance the capabilities of traditional neural 
networks by leveraging insights from the field of physics. 

Neural networks have revolutionised fields such as computer vision, natural language 
processing, and speech recognition. However, in certain applications where physical laws and 
constraints play a crucial role, standard neural networks may fail to capture the underlying 
physics accurately. To address this limitation, various techniques have been proposed to 
incorporate physical knowledge into neural networks.  

There are several approaches to inform a neural network with physics-based knowledge. A 

first method is to modify the loss function of the neural network to enforce physical constraints 

[33]. For example, in the field of fluid dynamics, where the conservation of mass and 

momentum are fundamental principles, a loss function can be designed to penalize predictions 

that violate these principles [34] This approach ensures that the neural network learns to 

respect the laws of physics and produces physically meaningful results. An alternative way is 

to modify the optimization algorithm to incorporate physical knowledge [35]. For instance, 

gradient-based optimization algorithms can be augmented with physical constraints [36]. 

Another popular approach is to incorporate physical knowledge into the architecture of the 

neural network [37]. The latter approach has been a particularly effective strategy in machine 

learning long before PINN became popular. For example, instead of using a standard fully 

connected architecture, a common approach used in computer vision is to use a convolutional 

architecture that considers the spatial structure of the problem and incorporates physical 

symmetries. In the field of image segmentation, a physics-inspired neural network can be 

designed with convolutional layers that have shared weights to enforce translation invariance, 

ensuring that the network maintains spatial consistency and respects the inherent symmetries 

in the data. As another example, RNN provides time-scale invariance, and fading memory, 

both important in the processing of sequential data. Furthermore, Graph Neural Networks 
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(GNNs) [38] are inherently biased to process graph-structured data like social networks, 

molecule structures, etc. 

Now, from a RC perspective the loss function and the optimisation algorithm do not play an 

important role, since simple linear regression techniques are used. Therefore, we can restrict 

our search to PINN architectures. Some examples in the context of sequential data processing 

are given below.  

Oscillators-based neural network architectures utilise the behaviour of oscillators, which are 

physical systems that exhibit rhythmic patterns or oscillations, to mimic the functioning of 

biological neurons and create a network of interconnected units that can perform computation. 

By harnessing the properties of oscillators, such as their ability to synchronise and exhibit 

resonance, these neural network architectures can effectively model and analyse complex 

phenomena. Few examples of deep learning models leveraging on oscillators can be found in 

[39] [40]. In this category we can include wave-based models as [41] which enforce 

spatiotemporal oscillatory motion. 

Residual models enforce a bias towards the identity mapping [42]. This architectural bias is 

achieved building skip connections that interconnect spatially distant layers together, a feature 

observed also in cortical circuits of the brain. This strategy has been proved very effective [43], 

and it’s currently implemented in almost every deep neural network architecture.  

Convolutional models enforce spatial localisation and translational invariance. These models 

proved to be effective both in computer vision [44] and time series processing [45]. 

Linear state space models are machine learning models based on State Space Models 

(SSMs) enforcing linearity as an architectural bias. SSMs have recently raised interest in the 

deep learning community due to the seminal paper [46]. There, authors established a link 

between convolutional models and Linear SSMs that allows to train them in parallel via GPU. 

Other interesting variants of Linear SSMs include DSS [47] and S5 [48], where different 

structures of the state space matrices are explored. More recently, a Linear SSM incorporating 

an attention mechanism on the input signal has been proposed [49]. Other than allowing fast 

training, the linearity enforced in all these models equip them with the capability of long-term 

propagation of information. A feature that is not easy to gain in strongly nonlinear models. 

Recurrent memory cells have been used to process data sequentially exploiting alternative 

paths of the information flow enforcing an input-dependent selective memory. These models 

include LSTM [50] and GRU [51]. Recently, other models proposed the construction of 

memory cells exploiting orthogonal polynomials (e.g. Legendre polynomials) to get expressive 

representation of the input signal [52].    

Lagrangian neural networks (LNNs) [53] are a novel approach that parameterises 

arbitrary Lagrangians using neural networks. These models enforce symmetries 

corresponding to conservation laws, e.g. energy and momentum, naturally present in physical 

systems. LNNs produce energy-conserving models. 

 

In the next section we focus on Oscillators-based NNs since they fit perfectly into the 

archetype zoo provided in Deliverable D3.1. 
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2.2.1 Oscillators-based Neural Networks 
 

In this section we trace a path from the classical harmonic oscillator to a recurrent neural 

network model composed of many oscillator-based units.  We provide a gentle introduction to 

the damped harmonic oscillator, framing it in the context of fading memory systems. Then we 

introduce the coRNN model [39].  

Damped harmonic oscillator 

Harmonic oscillators are at the core of classical mechanics. They describe simple oscillatory 

motions around an equilibrium point without experiencing any dissipation of energy. The 

equation of an harmonic oscillator reads as follows: 

⁡𝑦̈ = −𝛾𝑦. (2) 

The general solution of the above equation is given by 

𝑦(𝑡) = 𝐴 cos(√𝛾𝑡 + 𝜓) , (3) 

where the amplitude 𝐴, and phase 𝜓, are uniquely determined by the initial conditions. Here 

different initial conditions give rise to different solutions. 

A key feature required for a dynamical system to be exploited for computational purposes is 

the fading memory. In rough terms, we aim for a stable dynamical system which can wash out 

in the long term any dependencies from the initial conditions. Therefore, exploiting a network 

of randomised oscillators of the form of eq. (5) for computational purposes is impractical. 

Fading memory can be brought by a damping term into eq. (4), thus introducing a source of 

energy dissipation. The equation of a damped harmonic oscillator reads as follows: 

𝑦̈ = −𝛾𝑦 − 𝜀𝑦̇. (4) 

In eq. (6), the 𝛾 scalar term relates with the intrinsic frequency of the underlying harmonic 

oscillator, while the 𝜀 scalar term refers to the strength of the damping force (also called 

friction) exerting against the harmonic oscillator. Any value of 𝜀 > 0 induces the system of eq. 

(6) to converge towards the resting state of 𝑦 = 0. According to the value of 𝜀, two main 

behaviours can be observed: overdamped dynamics (when 𝜀 > 2√𝛾 ) characterised by 

exponential decay towards 𝑦 = 0 without any oscillations, or underdamped dynamics (when 

0 < 𝜀 < 2√𝛾 ) characterised by an oscillatory behaviour with decreasing amplitude in time. In 

this sense, the damped harmonic oscillator possesses a fading memory property. Often, an 

external time-varying force 𝑓(𝑡) drives the damped oscillator giving rise to the following 

equation: 

𝑦̈ = 𝑓(𝑡) − 𝛾𝑦 − 𝜀𝑦̇. (5) 

The driven damped harmonic oscillator of eq. (7) emerges in many physical, engineering and 

biological systems. Such a simple system, sketched in Figure 1(a) for the case of unitary mass, 

has already several properties that make it ideal to serve as a fundamental cell of our learning 

strategy.  
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Figure 1. Panel (a): Schematic of a driven damped oscillator. Panel (b): Bode plot for harmonic oscillators with 
different stiffnesses γ and damping coefficients ε. Panel (c): Time evolution of a single harmonic oscillator with 
stiffness γ = 1 driven by f(t) = tanh(Wy+b) for various values of ε, W, and b. 

First, different choices of 𝛾 and 𝜀 give rise to quite different transient behaviors, as shown in 

Figure 1(c). This reflects in the capability of each oscillator to isolate different portions of the 

spectrum of the input signal 𝑓(𝑡) as can be seen in the Bode plot of the configuration 𝑦 in 

Figure 1(b). Also, note that the velocity 𝑦̇ can serve as a high pass counterpart to 𝑦. Second, 

these oscillators have fading memory. Indeed, the energy of (1) is 𝐸 = 𝑦̇2/2 + 𝛾𝑦2/2. This is 

a strictly decreasing function of time for 𝜀 > 0, since 𝐸̇ = −𝜀𝑦̇2. In rough terms, the dynamical 

system forgets its initial condition after a transient. 

Still, the linear nature of (6) may be not expressive enough. We thus consider a simple 

variation on this system obtained by selecting the forcing as the output of a one-dimensional 

neuron with a hyperbolic tangent as the activation function 𝑓(𝑡) = tanh⁡(W𝑦 + b ) where W,b ∈

ℝ (see green and red lines in Figure 1(c)). This small change substantially enriches the 

dynamic spectrum of this simple unit, without changing its fundamental character. Considering 

a bias term 𝑏 ≠ 0 also changes the equilibria of the spring. The equilibria of the oscillator are 

now all 𝑦 verifying tanh⁡(W𝑦 + b) − 𝛾𝑦 = 0. For W < 0, the oscillator becomes multi-stable with 

up to three equilibria with one unstable and two stable ones, as described in deliverable D3.1. 

 

Coupled oscillatory RNN 

The next step is to build a network of input-driven damped harmonic oscillators and use this 

physically-inspired neural network model to perform computations. Let us denote with vectors 

𝜸, 𝜺 ∈ ℝ𝑁, the characteristic frequencies and damping ratios of each oscillator in the network. 

Then, the following equation describes a network of heterogeneous driven damped harmonic 

oscillators: 
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𝐲̈ = 𝐟(𝑡) − 𝜸 ⊙ 𝐲 − 𝜺 ⊙ 𝐲̇,  

where ⊙ denotes the point-wise multiplication of vectors. Similarly, 𝐲, 𝐲̇ ∈ ℝ𝑁 collect all 

position and velocity for each of the oscillators. Generalising the nonlinear spring tanh⁡(W𝑦‾ +

b) discussed above, we introduce here the following more expressive feedback forcing term 

𝐟(𝑡) = tanh(𝐖𝐲 + 𝐕𝐮(𝑡) + 𝐛) ,  

where 𝐮(𝑡) is the external input driving the network. Being f a function of all configurations y, 

this forcing term has the effect of nonlinearly connecting the decoupled oscillators into a 

network. 

In Random Oscillators Networks (see Section 3) we will build a network of many 

interconnected Archetype Units of the oscillatory type described here, thoroughly studying its 

theoretical properties and evaluating empirically its performance in time series processing 

tasks. 

2.3. Learning beyond backpropagation 

Learning in archetype units and networks requires to update a set of adaptive parameters to 

fit a given objective. The adaptive parameters control the behavior of the archetype. One of 

the most popular approaches for learning is the stochastic gradient descent update [54]: given 

a loss function computing the error of the model prediction on a given input, stochastic gradient 

descent updates each adaptive parameter towards the direction of steepest loss descent. By 

iterating this process multiple times on a given set of data, the model moves towards a region 

of parameters where the loss is low, hence where the model predictions are accurate.  

The steepest descent direction is computed by the gradient of the loss with respect to the 

adaptive parameters. The backpropagation algorithm [55] allows to compute the gradient for 

any differentiable function. Stochastic gradient descent and backpropagation are the main 

tools used nowadays to learn with artificial neural networks, due to their effectiveness on a 

wide range of tasks [56]. 

One of the key ideas behind archetypes is that they can be implemented on different physical 

substrates: from computer simulations to soft robots and swarms. Unfortunately, while the 

backpropagation algorithm can be efficiently run on a computer simulation, it cannot be easily 

adapted to work on a physical substrate, where computation is performed by the physical 

system itself [57]. On one side, backpropagation requires the learning model to have two 

separate “circuits”: one circuit computes the evolution of the model over time for any external 

input stimuli, and the other circuit computes the gradient for each parameter. The circuits need 

to be the same, both in structure and in connections strength, and they cannot interfere with 

each other. When one circuit is operating, the other needs to be shut down. These 

assumptions [58], [59] make backpropagation difficult or even impossible to be implemented 

on most physical systems. 

Backpropagation-free learning algorithms exist, and they are designed to overcome the 

aforementioned limitations of backpropagation [57], [59], [60], [61]. Direct feedback alignment 

[62], [63] employs a random update circuit, bypassing the issue in backpropagation of circuits 

with identical connections strength. Unlike feedback alignment, direct feedback alignment 

allows projections of the error signal to layers that are not directly connected with the output 

layer. The forward-forward algorithm [64] removes the need for a separate update circuit and 

only keeps the “forward” circuit that computes the state evolution. The circuit is used in two 
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distinct phases to compute the parameters update. Similarly, Equilibrium Propagation [61], 

[65] does not require two separate circuits. During a first phase, Equilibrium Propagation lets 

the system freely evolve under a given external input until it reaches a steady state (the fixed, 

or equilibrium point). During the second phase, the steady state is used as a starting point to 

nudge the system towards a state where the prediction for the same external input is the 

correct one. The second phase requires the target answer for the input and a loss function to 

measure the accuracy of the prediction. The system eventually reaches a second steady state. 

The difference between the first steady state and the second steady state is used to update 

the parameters of the model. Interestingly, the update is local to each parameter, provided 

that the first steady state can be accessed later after the second phase.  

We plan to leverage backprop-free algorithms to adapt the parameters of the archetypes. 

When possible, mostly in computer simulations, we will also leverage backpropagation. 

Equilibrium Propagation is a promising approach to learning with archetypes since i) it does 

not require two separate circuits, ii) the steady states can be easily obtained in a physical 

system by letting the system itself evolve, iii) the update is local and does not require sharing 

global information across the whole system/archetype. 

3. Random Oscillators Networks 

We present a recurrent neural network made of oscillators. The oscillators are very flexible 

archetypes (presented in D3.1, Section 1) that can be easily connected into networks of 

archetypes.  

In line with the Archetype Networks of oscillators presented in D3.1, Section 3, we build our 

Random Oscillators Network (RON) [1], [2] by starting from a continuous-time dynamical 

system composed by a set of damped oscillators. Introducing the variable 𝐳 = 𝐲̇, we get the 

following first-order system of ODEs: 

𝐲̇ = 𝐳,

𝐳̇ = tanh⁡(𝐖𝐲 + 𝐕𝐮(𝑡) + 𝐛) − 𝜸 ⊙ 𝐲 − 𝜺 ⊙ 𝐳,
 

In ML terms, the equations above describe a recurrent layer with hidden state 𝐲 ∈ ℝ𝑁, with 𝑁 

being the number of neurons. 𝐖 ∈ ℝ𝑁×𝑁 are the hidden-to-hidden recurrent connections, 𝐕 ∈

ℝ𝑁×𝐼 are the input-to-hidden connections, and 𝐛 ∈ ℝ𝑁 the bias vector. The hyperbolic tangent 

mediates a nonlinear bounded response in the oscillators. 

We discretise the ODE with an implicit (the 𝐲̇ equation), and an explicit (the 𝐳̇ equation) Euler 

numerical scheme, via discretisation time step 𝜏 > 0. 

Definition 2.1. Random Oscillators Network (RON). The RON (Figure 2) is a discrete-time 

RNN model whose update reads as follows: 

𝐲𝑘+1 = 𝐲𝑘 + 𝜏𝐳𝑘+1,

𝐳𝑘+1 = 𝐳𝑘 + 𝜏(tanh(𝐖𝐲𝑘 + 𝐕𝐮𝑘+1 + 𝐛)

−𝜸 ⊙ 𝐲𝑘 − 𝜺 ⊙ 𝐳𝑘).
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Figure 2. The Random Oscillators Network (RON) consists of N harmonic oscillators forced by coupled neurons 
with hyperbolic tangent activations. A linear output layer maps the states of the mechanical oscillators in the 
desired output. This layer is the only one that is adapted during learning. 

RON is a component of the ACS that casts an Archetype Network of harmonic oscillators with 

neuron-like connectors towards a recurrent neural network implementation, where the hidden 

state is defined as 𝐡𝑘 = (
𝐲𝑘

𝐳𝑘
) . The hidden states can be exploited as features encoding crucial 

temporal information for the processing of the discretised input time series 𝐮𝑘. We use for 

simplicity only the position of the oscillators 𝐲𝑘  to perform time series processing. Precisely, 

we stack a linear layer transforming 𝐲 to an output state 𝐫 as follows: 

𝐫𝑘+1 = 𝐖𝑜𝐲𝑘+1 + 𝐛𝑜 

where 𝐖𝑜, 𝐛𝑜, are weights and biases of the output layer. RON maps input sequences 𝐮𝑘 into 

output sequences 𝐫𝑘. See Figure 2 for a schematic representation of RON model. 

In RON, the parameters 𝐖,𝐕, 𝐛, of the feedback forcing term are randomly generated and 

kept fixed. Precisely, they are generated according to a uniform distribution in (−2,2) for 

𝐖, (0,1) for 𝐕 and (−1,1) for 𝐛. Then, in line with the RC framework, the matrix 𝐖 is scaled 

with an hyperparameter 𝜌 > 0 which tunes its spectral radius, and the matrix 𝐕 is scaled with 

an hyperparameter 𝜈 > 0 (see [66] for a practical guide to RC techniques). Similarly to 𝜌, and 

𝜈, also the stiffness and damping coefficients of the oscillators, respectively 𝜸, and 𝜺, are 

treated as hyperparameters of the RON to be selected via validation techniques. In practice, 

we create heterogeneous oscillators selecting a midpoint and a radius for each 𝜸 and 𝜺, thus 

generating uniformly random values within that interval. An important feature of RON is the 
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heterogeneity of input-driven responses of its reservoir of oscillators. This heterogeneity 

allows the linear readout to extract more easily the crucial features for solving the task at hand. 

Remarkably, entries of 𝐖𝑜, 𝐛𝑜, are the only trainable parameters of an RON, and we use ridge 

regression for learning them. The scalar value 𝜏 is linked to the step size of the numerical 

integration. Therefore, if one wants to discretise the continuous-time model for the sake of 

merely reproducing the continuous-time dynamics, then an opportunely small value of the step 

size is required. However, here we are not interested in reliably simulating trajectories of the 

continuous-time dynamical system but rather to investigate the expressiveness of the 

physically-inspired discrete-time RNN model. As a consequence, in the remainder, we will 

treat 𝜏 > 0 as a hyperparameter. 

In order to evaluate the impact of randomisation, we consider a version of RON, that we call 

heterogeneously coupled oscillatory RNN (hcoRNN), where parameters 𝐖,𝐕, 𝐛, of the 

feedback forcing term are learned via the backpropagation through-time algorithm. Whilst we 

consider 𝜏, 𝜺, 𝜸, as hyperparameters of the hcoRNN model. 

RON as Leaky-ESN. In the particular case of RON with 𝜺 ≡
1

𝜏
, the 𝐳-dynamics become 

completely determined by the 𝐲 dynamics. Therefore, the hcoRNN equation becomes 

𝐲𝑘+1 = 𝐲𝑘 + 𝜏2tanh(𝐖𝐲𝑘 + 𝐕𝐮𝑘+1 + 𝐛) − 𝜏2𝜸 ⊙ 𝐲𝑘 . 

Interestingly, setting further 𝜸 ≡ 1, we recover a popular RC model named Leaky-ESN [26], 

whose state-update equation reads as follows: 

𝐲𝑘+1 = 𝜏2tanh(𝐖𝐲𝑘 + 𝐕𝐮𝑘+1 + 𝐛) + (1 − 𝜏2)𝐲𝑘 . 

We can therefore interpret the hyperparameter 𝜏 as the squared root of the leak rate of the 

model. 

The Leaky-ESN model has been successfully used in many ML tasks involving time series, 

like audio processing [26]. Remarkably, the Leaky-ESN with linear output layer can accurately 

learn the climate of chaotic attractors. 

From this perspective, the RON can be interpreted as a generalisation of the Leaky-ESN 

model, and as such it has the capability to describe both stable complex oscillatory dynamics 

and chaotic dynamics, provided with an opportune choice of hyperparameters. 

3.1. Linear stability analysis of RON 

In this section, we perform a linear stability analysis of the RON mode. All the proofs can be 

found in the Appendix A – Proof of mathematical results. Let us denote the hidden state of our 

model at time step k as 𝐡𝑘 = (
𝐲𝑘

𝐳𝑘
). Then, the RON model can be defined by the imput-driven 

state-update equation 𝐡𝑘+1 = 𝑮(𝐡𝑘 , 𝐮𝑘+1), where 𝑮:ℝ2𝑁 × ℝ𝐼 → ℝ2𝑁 is the RON state-update 

equation. The Jacobian of the 𝑮 map computed on (𝐡𝑘 , 𝐮𝑘+1), denoted with 𝐉𝑘, reads: 
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𝐉𝑘 =

[
 
 
 
 
∂𝐲𝑘+1

∂𝐲𝑘

∂𝐲𝑘+1

∂𝐳𝑘

∂𝐳𝑘+1

∂𝐲𝑘

∂𝐳𝑘+1

∂𝐳𝑘 ]
 
 
 
 

=

⁡= [
𝐈 + 𝜏2𝐀𝑘 𝜏(𝐈 − 𝜏diag⁡(𝜺))

𝜏𝐀𝑘 𝐈 − 𝜏diag⁡(𝜺)
] ,

 

where 

𝐀𝑘 ⁡= 𝐒𝑘𝐖 − diag⁡(𝜸),

𝐒𝑘 ⁡= diag⁡(1 − tanh2⁡(𝐖𝐲𝑘 + 𝐕𝐮𝑘+1 + 𝐛)).
 

A widely known stability condition for RC systems [20] is given by imposing that the Jacobian 

is a contraction. This condition of contraction implies the existence and uniqueness of a 

uniformly asymptotically stable solution for the input-driven system, and it is expressed by 

imposing the Euclidean norm of the Jacobian to be uniformly less than 1. We can already see 

that 𝐉𝑘 = 𝐈 + 𝜏 [
𝜏𝐀𝑘 𝐈 − 𝜏diag⁡(𝜺)
𝐀𝑘 −diag⁡(𝜺)

] has a bias towards the identity mapping for small values of 

𝜏. We provide below an upper bound for the Euclidean norm of the Jacobian based on the 

following quantities 

𝜉 = max
𝑗

 |1 − 𝜏𝜀𝑗|,

𝜂 = max
𝑗

 |1 − 𝜏2𝛾𝑗|,

𝜎 =∥ 𝐖 ∥,

 

while we denote 𝛾max = max𝑗  𝛾𝑗 , 𝜀max = max𝑗  𝜀𝑗, and similarly for the min values we use 

𝛾min, 𝜀min. 

 

Theorem 3.1. The norm of the Jacobian matrix of the RON model admits the following upper 

bound 

∥∥𝐉𝑘∥∥ ≤ max(𝜂 + 𝜏2𝜎, 𝜉) + 𝜏max(𝜉, 𝛾max + 𝜎). 

In particular, for 𝜏 ≪ 1, and assuming 𝜀min > 0, and 𝛾max ≥ 1, the bound reads as follows: 

∥∥𝐉𝑘∥∥ ≤ 1 + 𝜏(𝛾max + 𝜎) + 𝑂(𝜏2). 

 

Theorem 3.1 highlights that although the entire eigenspectrum can be uniformly bounded 

around a neighbourhood of the identity by means of 𝜏, it is a hard task to find combinations of 

hyperparameters ensuring that sup𝑘  ∥∥𝐉𝑘∥∥ < 1, and so ensuring uniform asymptotic stability for 

the RON model. One interesting example is given by the particular case of 𝜺 ≡
1

𝜏
, where the 

𝐲-dynamics becomes decoupled from the 𝐳-dynamics, as observed in the previous section; 

we provide sufficient conditions for contractivity for such a particular case in the Appendix A – 

Proof of mathematical results. In the general case, imposing the upper bound of Theorem 3.1 

to be less than 1, we obtain sufficient conditions for a contractive RON, thus a uniformly 
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asymptotically stable RON in particular. For sake of conciseness, these sufficient conditions 

for a contractive RON are reported in the Appendix A – Proof of mathematical results. 

These sufficient conditions define a very narrow region of hyperparameters. The difficulty to 

satisfy these sufficient conditions reflects how disinclined is RON to this strong condition of 

stability. Imposing such strict conditions of contractivity on the RON model might harm its 

expressiveness. We might relax the request of contracting at each time step in favour of the 

less stringent requirement of having all the eigenvalues inside the unit circle. Note however 

that, for a generic discrete-time linear non-autonomous system, having all eigenvalues inside 

the unit circle is not sufficient to imply asymptotic stability [67], [68]. 

We provide a more precise picture of the eigenvalues distribution of the RON model in the 

following theorem. 

 

Theorem 3.2. For all 𝜇 eigenvalues of the Jacobian of the RON model there exists a point 𝜆 ∈

{1 − 𝜏2𝛾𝑗 , 1 − 𝜏𝜀𝑗}𝑗=1

𝑁
 such that 

|𝜇 − 𝜆| ≤ 𝐶,  

where 𝐶 = 𝜏2𝜎 + 𝜏max(𝜉, 𝛾max + 𝜎). 

 

Figure 3. Depiction of the eigenspectrum’s bound given by Theorem 3.2 for the Jacobian of an RON model. 

 

According to Theorem 3.2, the eigenspectrum of the Jacobian of an RON model is contained 

inside the union of disks of radius 𝐶 centered on the points 1 − 𝜏𝜀𝑖, 1 − 𝜏2𝛾𝑖, see Figure 3 for 

a visual representation of this fact, and Figure 4 for few eigenspectrum configurations of a 

RON. For an input-free RON, having all eigenvalues inside the unit circle does suffice to have 

asymptotic stability. We provide a necessary condition based on the strength of the feedback 

loop, i.e. providing a bound on the 𝜎 hyperparameter, for the asymptotic stability of an input-

free RON. 
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Figure 4. Jacobian's eigenspectrum eq. (9) for few hyperparameter's combinations. Bias vector has 𝛽 in all its 

components, input-to-hidden matrix 𝑽 is zero matrix. Left: a case satisfying the sufficient conditions for a 
contractive RON. Centre: a case of RON coinciding with Leaky ESN. Right: a case satisfying the guideline values 
of Remark 3.4 with strong coupling i.e. 𝜎 ≫ 1. 

 

Proposition 3.3. Necessary conditions. If the input-free RON model is asymptotically stable, 

then either one of the two cases must hold true 

• if 𝜎 > 𝜉 − 𝛾max, then 𝜎 ≤
1−𝜏𝛾max

𝜏+𝜏2 . 

• if 𝜎 ≤ 𝜉 − 𝛾max, then 𝜎 ≤
1−𝜏𝜉

𝜏2 . 

 

The idea of the proof relies on imposing that all the disks of Theorem 3.2 lie inside the unit 

circle. This translates in the conditions: 

𝐶 ≤ ⁡⁡⁡𝜏𝜀𝑖 ⁡≤ 2 − 𝐶,

𝐶 ≤ ⁡⁡⁡𝜏2𝛾𝑖 ⁡≤ 2 − 𝐶,
 

for all 𝑖 = 1,… ,𝑁, where 𝐶 is defined in Theorem 3.2. The necessary conditions of Proposition 

3.3 are derived by imposing that 𝐶 ≤ 1.  

Remark 3.4 (Guideline values). Searching around the edge of stability of RON and pushing 

𝐶 to zero, we derive the following guideline values for the hyperparameters of the oscillators: 

𝜀min ≥ 0,
𝛾min ≥ 0,

𝜀max ≤ 2/𝜏,

𝛾max ≤ 2/𝜏2.

 

Selecting 𝜏 values small enough will generate typically RON models with an underlying 

Jacobian just marginally unstable with eigenvalues at most slightly beyond the unitary circle 

in a neighborhood of the value of 1. Therefore, promoting the computation at the edge of 

stability, which has been recognised to be useful for time series processing [28], and lately 

also in typical deep learning applications [69]. 
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3.2. Experiments 

coRNN. We compare the performance of RON against the coupled oscillatory RNN (coRNN) 

from [39]. coRNN also builds on a network of oscillators. A coRNN has unique scalar values 

𝛾 ≡ 𝛾, 𝜀 ≡ 𝜀, and it is defined by the following equation: 

𝐲𝑘+1 = 𝐲𝑘 + 𝜏𝐳𝑘+1,

𝐳𝑘+1 = 𝐳𝑘 + 𝜏(tanh⁡(𝐖𝐲𝑘 + 𝒲𝐳𝑘 + 𝐕𝐮𝑘+1 + 𝐛)

−𝛾𝐲𝑘 − 𝜀𝐳𝑘).
 

Differently from RON, the coRNN model is fully trained, does not use heterogeneous 

oscillators and requires an additional hidden-to-hidden adaptive matrix 𝒲. In particular, for the 

same number of units, the coRNN model has more trainable parameters than RON (and 

hcoRNN), thus larger computational time for training and inference. 

Our empirical evaluation focuses on two key RON properties, discussed in the theoretical 

analysis of Linear stability analysis of RON: 

1 We study the impact of weight randomisation by comparing the performance of an 
RON against fully-trained hcoRNN, coRNN, and LSTM [50], on both sequence 
classification and time series forecasting benchmarks. We also highlight the 
advantages of RON in terms of computational efficiency. 

2 We study the role played by the dynamical system stability in an RON. To this end, we 
show the stability properties of the best models, according to our findings of Linear 
stability analysis of RON. 

To guarantee a fair comparison, we adopt the experimental setup of [39], where the coRNN 

model was first introduced, and we extend it with additional benchmarks. For each benchmark 

and model, we performed grid search on a separate validation set to obtain the best models 

which were then evaluated on the held-out test set. We report all the details related to model 

selection and best configurations in the Appendix B – Details on experimental settings. The 

code to reproduce the experiments is available at https://github.com/AndreaCossu/. 

Sequence classification benchmarks. We use 6 classification benchmarks, sMNIST, 

psMNIST, npCIFAR-10, FordA, Adiac and uWaveGesture. FordA, Adiac and uWaveGesture 

are from timeseriesclassification.com. The MNIST and CIFAR-based benchmarks are used to 

test the long-term memory capabilities of the model, while FordA and Adiac for medium and 

short-term memory, respectively. In sMNIST, the model observes one pixel at a time and it is 

required to predict the digit class after having processed all the 784 pixels. The psMNIST 

benchmark is the same as sMNIST, except that the pixels in an image are shuffled according 

to a fixed, random permutation. 

The npCIFAR-10 benchmark presents each RGB image of CIFAR-10 in a row-wise fashion 

(flattening the RGB channels into a single vector), leading to sequences of 32 elements. A 

randomly generated suffix is added to each sequence, reaching a sequence length of 1,000 

time steps. Since the information required to classify the image is contained at the very 

beginning of the sequence, the model needs to extend its memory over hundreds of steps. 

FordA is a binary classification task from real-world data (of time series of length 500) to 

diagnose whether a certain symptom exists or does not exist in an automotive subsystem. 

Adiac is used to measure the ability of the model to classify among a large number of classes 

(37) on relatively short sequences (176 time steps). uWaveGesture is a benchmark that 

represents different gestures measured from accelerometers. 

https://github.com/AndreaCossu/
http://timeseriesclassification.com/
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Chaotic systems forecasting. In [39], the authors discussed how coRNN models are not 

tailored to time series forecasting for chaotic systems, due to their inability (by design) to 

generate chaotic dynamics. We show that, instead, our RON model is very effective in 

predicting chaotic systems. We ran time-series forecasting experiments on the Lorenz96 

chaotic system. The Lorenz96 system is defined by the following differential equation 𝑥̇𝑖 =
(𝑥𝑖+1 − 𝑥𝑖−2)𝑥𝑖−1 − 𝑥𝑖 + 𝐹, with 𝑖 = 1,… ,5 and 𝐹 an external driving force. The task consists in 

predicting the next 25-th state of the system in the chaotic regime with 𝐹 = 8. The training, 

validation, and test sets are composed of 128 trajectories of length 2000. Each trajectory is 

independently generated by solving the Lorenz96 equation with a random initial condition 

sampled uniformly from [𝐹 − 0.5, 𝐹 + 0.5] and a discretisation time-step of 0.01 . In addition, 

we also study the popular Mackey-Glass chaotic system [70]. Similar to [21], the task is to 

predict the 84-th next state of the system. As commonly done for time series forecasting, we 

used an initial washout of length 200 (the first 200 steps are used to warm up the model, but 

are not used when evaluating its performance). The performance of the models is measured 

by the Normalised Root Mean Squared Error (NRMSE), where normalisation is performed by 

diving the RMSE by the root mean square of the target trajectory. 

3.3. Results 

Table 1 reports the results on all benchmarks for LSTM, Leaky ESN, coRNN, hcoRNN and 

RON. Results are divided in two categories: fully-trained models, and randomised ones. We 

highlight in bold the best accuracy within each category, in red for fully-trained and green for 

randomised models, underlining the overall better. Within each benchmark, we use the same 

number of trainable parameters for each model. For CIFAR, Lorenz96, and MNIST-based 

benchmarks we keep a large number of trainable parameters similarly to [39], while for FordA, 

Adiac, uWaveGesture and Mackey-Glass we explore a smaller parametrisation regime (Table 

2). 

Table 1 Average accuracy (and standard deviation) of RON and other recurrent models. 

 

On the long-term memory benchmarks, sMNIST, psMNIST and npCIFAR-10, our RON model 

outperforms the Leaky ESN by a large margin. It is important to stress that, usually, fully-

trained models achieve higher performance than randomised RC models in long-term memory 

benchmarks. Instead, except for the very challenging npCIFAR-10, RON not only outperforms 

ESN models but also significantly narrows the gap with respect to fully-trained models. 
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Table 2 Number of trainable parameters and total training time (in minutes) for each benchmark and model. 

 

FordA appears a challenging task to solve for LSTM and Leaky ESN models, arguably due to 

the low parametrisation regime. Here oscillators-based models exhibit a clear advantage, in 

particular our hcoRNN achieves the best overall accuracy. On the Adiac and uWaveGesture 

benchmarks, randomised RC models show an advantage over fully-trained models, and in 

particular RON achieves the best overall accuracy. 

As shown by the Lorenz96 and Mackey-Glass results, RON obtains the best overall 

performance when modelling chaotic dynamical systems. RON sharply outperforms fully-

trained models by two orders of magnitudes in the Lorenz96 task, while surpassing state-of-

the-art RC models. Fully-trained models like coRNN struggle in predicting chaotic behaviours. 

However, the same family of models shows excellent performance in the same task when 

equipped with randomisation properties. 

Generally in all the considered tasks, RON always outperforms Leaky ESN, demonstrating 

that a pool of randomly connected heterogeneous oscillators can provide a set of internal 

representations for time series processing purposes richer than typical ESN models. Overall, 

either hcoRNN or RON are the best-performing models in 6 out of 7 benchmarks, highlighting 

the effectiveness of their architectural bias. 

RON stability. We verified whether the best RON configurations (Table 13 in the Appendix A 

– Proof of mathematical results) satisfy the guideline values and the necessary conditions for 

linear stability we found in our analysis. We observed that the best RON in our experiments 

always satisfy both the guideline and the necessary conditions. We also compared the 

performance of our best RON against an RON that satisfies the sufficient conditions ensuring 

a contracting map. The results of this comparison show that the sufficient conditions are overly 

restrictive and do not allow to learn properly any of the time series tasks. Therefore, RON 

requires to go beyond contractivity and towards edge of stability configurations, where it 

performed best according to all our experiments. 

Study on varying sequence length. We considered the noise-padded Adiac task (npAdiac) 

to test the performance of all models to varying time-series lengths. The npAdiac dataset is 

created by appending after each Adiac time series (composed by 176 time steps) a number 

of 5, 50, 100, and 200 time steps of Gaussian noise (mean 0 and std 1). We report the 

accuracy results in Figure 5. The dots represent the average accuracy over 5 trials, the 

coloured shades cover one standard deviation. 

LSTM appears extremely sensitive to the padding of noise. In general, randomised models 

appear more resilient than fully-trained ones. In particular, hcoRNN keeps a better 

performance than coRNN and LSTM, while RON is always the overall best performing. 
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Figure 5. Accuracy on the npAdiac dataset. The x-axis shows the padded sequence length. 

 

Comparison with expRNN. We compare RON against the expRNN model [71], a fully-

trainable RNN with orthogonal recurrent weights. Results are shown in Table 3. RON always 

outperforms expRNN. On Adiac, the expRNN achieves the best performance among fully-

trained models. On FordA, the expRNN surpasses the LSTM, but it underperforms with 

respect to oscillatory-based models. ExpRNN does not seem suitable for chaotic time series 

forecasting, achieving the worst performance among the considered models. 

Table 3 Accuracy/loss for the expRNN model and RON 

 

 

Computational efficiency. Due to the untrained recurrent layer, the training time can be up 

to two orders of magnitudes smaller in RON than in fully-trained models. In fact, RON does 

not need to be trained with back-propagation through time, greatly improving its computational 

efficiency both in terms of time and energy consumption, compared to (h)coRNN and LSTM. 

The oscillatory-based recurrent models require more hyperparameters tuning than other 

recurrent models like LSTM. This often makes it challenging to train models like hcoRNN and 

coRNN. However, the lower training time for RON allows us to explore a wider range of 

configurations than in fully-trained models. This appears to be crucial, since the (h)coRNN is 

quite sensitive to the choice of its hyper-parameters, like 𝜏. 
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3.4. Sparse reservoir topologies for physical implementations of 

Random Oscillator Networks 

Here, we further extend the analysis on the RON approach, by introducing a pool of diverse 

strategies to sparsify the pattern of connectivity among the elementary units in the reservoir 

layer of a RON (the interested reader can find further details in [3]). 

In deep learning, sparse computation is often still implemented without relying on sparse data 

structures, but rather by performing dense matrix multiplications on very sparse matrices. This 

is mainly due to the advantage provided by co-processors like GPUs that do not really thrive 

on sparse multiplications, yet. However, computational efficiency is only one motivation behind 

the use of sparse architectures in deep learning. Implementing densely connected neural 

layers in physical substrates can be expensive and difficult to scale for a large number of units. 

We focus on the RON model. Such networks can hardly be implemented in a physical 

substrate (e.g. mechanical oscillators) when they require hundreds or thousands of fully 

connected oscillators. Such a system is far too complex to be built in the real world. Scaling 

down the number of oscillators and designing sparse topologies, where each unit needs not 

to be connected with all others, would solve all the aforementioned issues. But at what cost? 

Sparsity would give us the flexibility to create a variety of different architectures and to adapt 

to the constraints coming from the real world, but would the predictive performance of the 

resulting model still be comparable with its fully-connected counterpart? 

We answer positively to this question by designing and studying 6 sparse topologies for RON. 

We chose topologies with very different connection patterns, to cover a wide range of 

possibilities. Some of them, like the ring topology, are well established in the reservoir 

computing literature, while some others, like the Toeplitz and the sparse orthogonal, have not 

been extensively investigated in reservoir computing. Our experiments prove that sparse 

topologies in RON are effective across different sequence processing tasks and even with a 

small number of hidden units. We tested different levels of sparsity and we show that, with 

respect to its fully-connected counterpart, sparse topologies in RON do not show any 

substantial decrease in predictive performance, not even with 80%/90% of sparsity in the 

reservoir connections. Our main finding is that RON is an ideal candidate for the realization of 

a recurrent network in hardware, mainly because of its computational efficiency due to the 

untrained recurrent component and its effectiveness when combined with very sparse 

topologies. 

 

Sparse RON Topologies. We designed 6 different sparse reservoir topologies that we applied 

to the RON model, as well as the Leaky ESN. In all the following, we assume a recurrent state-

update matrix 𝑊 ∈ ℝ𝑁×𝑁. We set a sparsity level of 𝑃%, where 𝑃 = 0 corresponds to a fully-

connected reservoir matrix. In building sparse topologies of RON, we prioritized structures that 

are more prone to physical implementations. A fullyconnected network of 𝑁 oscillators has 𝑁2 

interconnections. This prevents RON from mechanical implementations at a large scale. 

Moreover, often in nature neural networks are characterised by local connections forming 

relatively sparse topologies. One solution to model local connections while tuning the sparsity 

of the network is to promote a band-like diagonal structure in the recurrent matrix 𝑊, 

suppressing farfrom-diagonal connections. For this reason, apart from the Sparse Orthogonal 

case (as discussed below), in all the other cases we sparsify the recurrent matrix 𝑾 zeroing-

out diagonal elements starting with the most far from the main diagonal and proceeding 

towards the main diagonal until the desired sparsity level is reached. The spectral radius of 𝑊 

is then scaled accordingly. 

a) Sparse Orthogonal: (or simply orthogonal). We randomly initialize 𝑾 uniformly in [0,1]. 
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Then, we compute the QR factorization of 𝑾 and we take the matrix 𝑸 ∈ ℝ𝑁×𝑁 to be our 

orthogonal matrix (note that the elements of 𝑸 will also be negative). However, 𝑸 is a dense, 

fully-connected matrix. To enforce sparsity, we randomly zero-out ⌊
𝑃×𝑁

100
⌋ rows of 𝑸. In practice, 

we perform the matrix multiplication 𝑾 = 𝑰𝑸, where 𝑰 is a 𝑁 × 𝑁 identity matrix with 𝑃 elements 

of the diagonal set to 0. The elements of 𝑰 to be zeroed-out are randomly selected. 

b) Lower triangular (Figure 6): we randomly initialize 𝑾 as a lower-triangular matrix where 

each element is sampled uniformly in [−1,1]. According to the sparsity level 𝑃, and starting 

from the bottom, we remove a certain number of "lower" diagonals, where 𝑗 < 𝑖 ( 𝑗 indexes the 

columns of 𝑾 and 𝑖 indexes its rows). A lower triangular matrix has already a base sparsity 

level of roughly 50%, as half of its value are zeroed-out. Further removing diagonals increases 

its sparsity. For example, for 𝑾 ∈ ℝ100×100 and 𝑃 = 90%, the resulting matrix will only have 

10 active diagonals in the lower part (including the main diagonal). We zero-out ⌊
𝑃×𝑁

100
⌋ lower 

diagonals, starting from the last one (which only includes the first value of the last row of 𝑾 ) 

and going up. Lower triangular matrices are associated with feed-forward architectures. 

 

Figure 6. A 10 × 10 lower triangular matrix. In black the non-zero entries. The corresponding topology is a feed-
forward architecture with the addition of self-loops corresponding to the main diagonal entries. The connections 
are i.i.d. uniformly sampled in (−1,1). Then the matrix is rescaled to a desired spectral radius. The sparsity level in 
the picture is 66%. 

 

c) Band (Figure 7): we randomly initialize 𝑾 uniformly in [−1,1]. Then, starting from the top 

and bottom and proceedings towards the main diagonal, we remove the upper (𝑗 > 𝑖) and 

lower (𝑗 < 𝑖) diagonals, up until reaching the desired level of sparsity. The resulting matrix has 

zero everywhere except that in a bandwidth spread around the main diagonal. The width of 

the bandwidth is inversely proportional to the sparsity level.  
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Figure 7 A 10 × 10 band matrix. In black the non-zero entries. The corresponding topology is characterised by 
bidirectional flow, and self loops corresponding to the main diagonal entries. The connections are i.i.d. uniformly 
sampled in (−1,1). Then the matrix is rescaled to a desired spectral radius. The sparsity level in the picture is 56%.  

 

d) Toeplitz (Figure 8): we first generate a band matrix as defined above. Then, we constraint 

the entries on each diagonal to have the same value. Toeplitz matrices describe linear 

convolutional operators.  

 

Figure 8 A 10×10 (band) Toeplitz matrix. The non-zero entries are coloured. Same colours represent same real 
values. In the case depicted there are effectively just 5 different real values, i.i.d. uniformly sampled in (−1,1), 
disposed in 5 different diagonals. Then the matrix is rescaled to a desired spectral radius. The corresponding 
topology is similar to the band topology with the additional constraints given by the diagonals. The sparsity level in 
the picture is 56%. 

 

e) Ring (Figure 9): we create a simple cycle (or ring) matrix by filling with 1s the main sub-

diagonal of 𝑾 as well as the last element of the first row. The rest of the elements are zero. 

The simple cycle matrix has a fixed sparsity: the only nonzero elements are 𝑁 − 1 ones in the 

main sub-diagonal and the one in the last place of the first row, for a total of 𝑁 nonzero 

elements. Therefore, the sparsity level is 100
𝑁2−𝑁

𝑁2 % = 100 (1 −
1

𝑁
)%. As the name suggests, 

in a ring topology each unit is connected only with one other unit and the connections form a 

ring across the units. 
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Figure 9 . A 10×10 simple ring matrix. The only non-zero entries are those in the subdiagonal and on the top right 
corner, and all of them are the same real value. Such unique real value is rescaled to a desired spectral radius. 
This connection matrix forms a ring topology. The sparsity level in the picture is 90%. 

 

 

f) Circulant (Figure 10): we randomly initialise 𝐶 real numbers in [−1,1], 𝑟1, 𝑟2, … , 𝑟𝐶. We define 

a circulant matrix with sparsity 100 (1 −
𝐶

𝑁
)% by defining (𝑾)𝑖+𝑠,𝑖 = 𝑟𝑠, for 𝑖 = 0,… ,𝑁 − 1, and 

𝑠 = 1,… , 𝐶, where the index 𝑖 + 𝑠 is intended modulo 𝑁. Thus, the circulant structure defined 

in this way is a natural generalisation of the ring topology that we recover as particular case 

when 𝐶 = 1. In fact, when 𝐶 = 1, then we have (𝑾)𝑖+1,𝑖 = 𝑟1 for 𝑖 = 0,… ,𝑁 − 2, i.e. the entire 

subdiagonal, and (𝑾)0,𝑁−1 = 𝑟1, i.e. the top right corner. A schematic example of the sparse 

circulant topology is depicted in Figure 10. 

 

Figure 10 A 10×10 circulant matrix. The non-zero entries are coloured. Same colours represent same real values. 
In the case depicted there are effectively just 3 different real values, i.i.d. uniformly sampled in (−1,1). Then the 
matrix is rescaled to a desired spectral radius. The corresponding topology can be represented as an annular 
network. Note the lack of self-loops in this topology. This architecture generalises the ring topology. The sparsity 

level in the picture is 70%. 

 

g) Full: for comparison, we also use a fully-connected 𝑾(𝑃 = 0%) randomly initialized in 

[−2,2]. 

 

We study in detail the performance of the aforementioned topologies at different levels of 

sparsity and for different datasets. 



 

 
WP4 Learning and Evolutionary Awareness 

D4.1 First version of the ACS  

 

 

 

  
 

Funded by the European Union under Grant Agreement 101070918. Views and opinions expressed are however those of the author(s) 

only and do not necessarily reflect those of the European Union or European Innovation Council and SMEs Executive Agency (EISMEA). 

Neither the European Union nor the granting authority can be held responsible for them. 
   35  

 

3.4.1 Experiments 
 

We chose 3 different benchmarks that are widely used for sequence processing tasks. Two of 

them, sequential MNIST and Adiac, are sequence classification tasks. The other, Mackey-

Glass, is a chaotic time-series forecasting task. 

For classification tasks, we compute the output of the models by feeding the last hidden state 

(i.e., the hidden state computed on the final time step of each sequence) to the linear readout 

layer. The readout outputs a probability for each candidate class and the class with the largest 

probability is selected as the final prediction. For the time-series forecasting task, the readout 

returns an output for each hidden state computed by the reservoir at each time step. 

We found that all RON configurations surpass the performance of Leaky ESN on all three 

benchmarks by a significant margin, across all levels of sparsity and over different numbers 

of hidden units. 

 

Table 4 Accuracy over sMNIST dataset. 

 
We observed that RON-based reservoir computing models retain a strong performance even 

when the number of randomized parameters is greatly reduced. Table 4 shows the average 

accuracy on sMNIST across multiple levels of sparsity. Even when pruning 80% of the 

connections in the hidden-to-hidden matrix 𝑾, both RON and Leaky ESN achieve a good 

performance. However, Leaky ESN shows a monotonically decreasing accuracy trend as 

sparsity increases. This is not the case for RON with sparse topologies. 

Compared to the full RON, where 𝑊 is a fully-connected matrix, all the sparse variants remain 

competitive. In particular, circulant RON and band RON do not show any performance 

decrease when pruning 80% of the hidden-to hidden weights. Interestingly, circulant RON and 

band RON with sparsity levels greater than or equal to 40% can surpass the fully connected 

RON variant. The other variants (the lower triangular, the orthogonal, and the Toeplitz RON) 

lose a few points for high sparsity levels (60 − 80%), but they still surpass the Leaky ESN. 

The ring RON, a popular topology borrowed from the ESN literature, performs on par with the 

full RON. This confirms the effectiveness of ring-like architectures in classification problems 

with hundreds of time steps. 
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Table 5 Accuracy on the Adiac dataset 

 
Adiac is a challenging dataset due to the low number of examples. However, sequences are 

much shorter than sMNIST. Therefore, unlike sMNIST, the model is not required to show long-

term memory properties but rather an effective input-output mapping. Table 5 shows that, on 

Adiac, the performance of Leaky ESN slowly decreases as the sparsity level increases. RON, 

instead, is more robust to different sparsity levels. The only exception is the lower triangular 

RON, whose performance decreases from around 71% with 50% sparsity to 68% with 90% 

sparsity. Interestingly, on the Adiac task the Orthogonal variant with 80% sparsity almost 

matches the full RON. Similarly to the sMNIST classification task, the circulant RON exhibits 

strong performance also on Adiac, suggesting this topology as promising for classification 

tasks in general. Although, the full RON obtains the best score on Adiac, the Toeplitz, 

Orthogonal, and Circulant topologies are able to closely approach the full RON performance 

even with sparsity levels greater or equal than 40%. 

Up to now, we focused on sequence classification datasets, where the objective is to predict 

the target class given the entire class. Nevertheless, recurrent models and reservoir 

computing models in particular, are especially powerful in time-series forecasting task. Table 

6 reports the NRMSE computed on the Mackey-Glass task.  

Table 6 NRMSE on Mackey-Glass 

 

In Mackey-Glass, the gap between RON and the Leaky ESN is even larger than in the other 

benchmarks. The NRMSE of RON is smaller than half of the NRMSE of Leaky ESN across all 

sparsity levels. Again, the lower triangular RON shows a small decrease in performance as 

the sparsity level increases. The other sparse topologies enjoy a robust performance with low 

variation between one sparsity level and another. The band RON results the clear winner on 

the Mackey-Glass task, almost over all sparsity levels considered. Surprisingly, the band 

topology with 80% sparsity achieves an NRMSE score almost halved compared to the full 

RON while displaying a smaller standard deviation. 
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All the results presented so far may be questioned by the fact that the reservoir computing 

models employ a relatively low number of hidden units. In turn, increasing the sparsity 

percentage may result in a relatively small number of additional dropped connections in 𝑾. 

To account for this effect, we ran additional experiments by increasing the number of hidden 

units in RON and Leaky ESN. Beside the experiments presented above with 100 units, we 

report the performance of all models with 500,1,000 and 2,000 hidden units on sMNIST (Table 

7) and Mackey-Glass (Table 8). We did not run the same set of experiments on Adiac, since 

the main challenge of Adiac is to learn from a limited number of examples. Therefore, 

reservoirs with thousands of units would only over-fit to the examples in the dataset. For this 

family of experiments, we always set the sparsity level to a large value, namely 80%, in order 

to be able to properly compare all the models. 

Table 7 Accuracy on sMNIST for different numbers of hidden units 

 
On sMNIST, we see that adding more units quickly increases the final performance of all 

models. Leaky ESN jumps from 74% of accuracy with 100 units to 88%. It is worth observing 

that RON models of just 100 units can surpass Leaky ESNs of × 10 number of neurons on 

sMNIST. Albeit circulant RON demonstrated the strongest performance on sMNIST with 100 

units, when scaling up the reservoir size the band RON architecture surpasses all the other 

considered models. Still, all RON models greatly surpass Leaky ESN: the best-performing 

RONs are the full RON and the band RON, scoring over 96% on test. All the other RON 

variants are all above 93% test accuracy, while Leaky ESN merely touches 88%. These results 

show that the small amount of hidden units used in our first set of experiments did not introduce 

a confounding factor on the sparsity effect. Even with 20 times as many units, sparse 

topologies with RON can achieve a comparable performance with respect to their fully-

connected version. 

Table 8 NRMSE for on Mackey-Glass for different numbers of hidden units. 

 
This is also confirmed on Mackey-Glass, where the NRMSE of all models is halved when 

switching from 100 to 2,000 hidden units. Again, all RON models surpass the Leaky ESN by 

a large margin. Here the gap widens since RON models of just 100 units can abundantly 

surpass Leaky ESNs of × 20 number of neurons on Mackey-Glass. Similarly to sMNIST, also 

on Mackey-Glass we observe the optimal topology to change when scaling up the reservoir 

size. In fact, although band RON demonstrated the strongest performance on Mackey-Glass 

with 100 units, when increasing the number of units the ring architecture surpasses all the 

other considered models. Remarkably, ring RON reaches a staggering 3 ⋅ 10−2 NRMSE, five 
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times smaller than a Leaky ESN with the same number of 2000 units. Therefore, we can 

conclude that increasing the number of hidden units in RON causes a corresponding increase 

in the performance, preserving both the robustness against large sparsity levels and the 

advantage with respect to the Leaky ESN. 

Our experiments suggest the circulant (including ring) and the band as the most promising 

topologies. Moreover, it emerges that the specific topology can significantly improve the 

performance while massively dropping the number of possible connections (even more than 

99.9% ), and that, in general, large sparsity levels are well tolerated by the RON model. This 

is a positive result indicating the possibility to physically implement RON, where the oscillators 

are coupled just with their neighbours, and having the chance to outperform fully connected 

digital alternatives. Another interesting aspect emerged is that for a predetermined sparsity 

level the optimal topology might depend on the reservoir size. 

The opportunity to leverage on sparse topologies in oscillatory-based recurrent models like 

RON opens up the possibility of implementation of such networks in real-world applications. 

One of the common problems when considering neuromorphic / physical implementation of 

neural networks is that all units in a layer are fully connected to all units in the next layer. 

Recurrent neural networks with a single layer suffer from the same issue since the units within 

the same layer are fully-connected. 

Developing sparse topologies allows to simplify the physical implementation of the model and 

allows for more flexibility in its development. Ad-hoc sparse connections can follow the 

constraints coming from the hardware substrate. For oscillatory-based models, it is unlikely to 

build a fully connected network of thousands of oscillators outside a computer simulation. With 

our work, we showed that: 1) oscillators-based models like RON do not always need 

thousands of units, but they can work well even with only 100 hidden units; 2) RON can prune 

the vast majority of the recurrent connections without affecting its predictive performance. 

Since RON follows the reservoir computing paradigm, we do not need to train the recurrent 

connections after the model is realised on a hardware substrate. This also gets rid of the on-

device training issue, which still plagues all fully trainable models like the LSTM when it comes 

to their physical implementation. 

Overall, RON looks like a compelling candidate for a physical implementation, due to both its 

computational efficiency (no training required on the recurrent component) and its 

effectiveness when equipped with very sparse topologies. 

3.5. Physically-implementable Random Oscillators Networks (pRONs) 

We provide a version of RON that is physically implementable and fully compatible with the 

archetype systems of D3.1.Due to its architectural properties (e.g., two separate nonlinear 

terms instead of only one as in RON) we are able to provide strong stability results for this 

new Archetype network. 

We consider the continuous-time network dynamics 

𝒙̇ = [
𝒚̇
𝒛̇
] = [

𝐳
tanh(𝐕𝐮(t)) − 𝐖𝑇tanh(𝐖⁡𝐲 + 𝐛) − 𝚪⁡𝐲 − 𝐄⁡𝐳], 

where 𝐱 = [
𝐲
𝐳
] ∈ ℝ2𝑁⁡represents the network’s state, 𝐮(𝑡) ∈ ℝ𝐼 is the time-dependent network 

input, 𝚪 = diag(𝛾1, … , 𝛾𝑖 , … , 𝛾𝑁) ≻ 0 and 𝐄 = diag(𝜀1, … , 𝜀𝑖 , … , 𝜀𝑁) ≻ 0 describe the stiffness and 

damping coefficients of 𝑁 harmonic oscillators, respectively.  We assume that 𝐖 ∈ ℝ𝑁×𝑁 is 

both full-rank and orthogonal (𝐖𝐖𝐓 = 𝕀𝑁). Finally, 𝐛 ∈ ℝ𝑁 is the bias term of the neuron-

inspired potential force. 
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As visualized in Figure 11, these dynamics can be interpreted as 𝑁 harmonic oscillators of unit 

mass coupled by the neuron-inspired potential 𝑈(𝐲) = ∑ log(cosh(∑ 𝐖ij𝐲j + 𝐛i
𝑁
𝑗=1 ))𝑁

𝑖=1  and 

excited through an input neuron that uses a hyperbolic tangent as the activation function. The 

output of the network 𝒓(𝑡) ∈ ⁡ℝ𝑂 ⁡is given by applying a linear layer to the oscillator positions: 

𝒓(𝑡) = 𝐖𝐨𝐲(t) + 𝐛o. 

 

The system exhibits a unique, isolated equilibrium 𝐱̅ = [
𝐲̅

𝟎𝑁] that is given by the roots of the 

equation 𝐖𝑇tanh(𝐖𝒚̅ + 𝐛) + 𝚪⁡𝒚̅ = 0. 

 

 

Figure 11. Block diagram of the physically-implementable Randomly Coupled Oscillator Network (pRCON): we 
define a reservoir of N harmonic oscillators coupled by a neuron-inspired potential. An input neuron excites the 
network as a function of u(t). The recorded oscillator positions y(t) serve as an input to the trainable linear readout 
layer. 

We can define a transformation 𝐲w = 𝐖𝐲 ∈ ℝ𝑁, 𝐳w = 𝐖𝐳 ∈ ℝ𝑁 into 𝒲-coordinates in which 

the state-space dynamics becomes 

𝒙̇w = [
𝒚̇w

𝐳̇w
] = [

𝐳w

𝐖𝑇tanh(𝐕𝐮(t)) − tanh( 𝐲w + 𝐛) − 𝚪w⁡𝐲w − 𝐄w⁡𝐳w
]. 

Here, 𝚪w = 𝐖⁡𝚪⁡𝐖T≻ 0 and 𝐄w = 𝐖⁡𝐄⁡𝐖T≻ 0 are now full matrices representing the stiffness 

and the damping coefficients, respectively. 𝒓(𝑡) = 𝐖𝐨𝐲w(𝐭) + 𝐛o recovers the output of the 

network. 

Furthermore, we can now, in the 𝒲-coordinates, come up with a physical interpretation of the 

network topology: the network consists of 𝑁 oscillators, each with the nonlinear elastic force 

profile tanh( 𝐲w,𝑖 + 𝐛𝑖), where 𝑖 denotes the index of the oscillator unit. Each oscillator 

additionally exhibits linear elasticity 𝚪w,𝑖𝑖⁡𝐲w,𝑖 and damping 𝐄w,𝑖𝑖 ⁡𝐳w,𝑖. A spring damper with 

stiffness 𝚪w,𝑖𝑗 and damping coefficient 𝐄w,𝑖𝑗 connects the ith and the jth oscillator units. Motors 

apply the force 𝐟𝑤 = 𝐖𝑇tanh(𝐕𝐮(t)) ∈ ℝ𝑁 on the oscillator units. 
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We strive to show that the network exhibits bounded states 𝐱(𝐭) for bounded inputs 𝐮(𝐭). This 

can be achieved by proving Input-to-State (ISS) stability [72]. First, we introduce a change of 

coordinate w.r.t. the equilibrium state: 𝐱̃ = 𝐱 − 𝐱̅. The delta dynamics are then given by 

𝐱̇̃ = [
𝒚̇̃

𝒛̇̃
] = [

𝐳̃
tanh(𝐕𝐮(t)) − 𝐖𝑇tanh(𝐖𝐲̅ +𝐖𝐲̃ + 𝐛) − 𝚪(𝐲̅ + 𝐲̃) − 𝐄𝐳̃

], 

with the equilibrium at 𝐱̃ = 𝟎𝟐𝑵. 

We now consider the strict Lyapunov candidate with skewed level sets [15], [73] 𝑉𝜇(𝐱̃) =

𝟏

𝟐
𝐱̃𝑇⁡𝐏V⁡𝐱̃ + 𝑉tanh(𝐲̃) where lcosh(∙)=log(cosh(∙), 𝐏V = [

𝚪 𝜇𝕀𝑁

𝜇𝕀𝑁 𝕀𝑁 ], 𝜇 > 0 and 

𝑉tanh(𝐲̃) = ∑[lcosh (∑𝐖𝑖𝑗

𝑁

𝑗=1

𝐲̅𝑗 + ∑𝐖𝑖𝑗

𝑁

𝑗=1

𝐲̃𝑗 + 𝐛𝑖) − lcosh (∑𝐖𝑖𝑗

𝑁

𝑗=1

𝐲̅𝑗 + 𝐛𝑖)

𝑁

𝑖=1

− tanh (∑𝐖𝑖𝑗

𝑁

𝑗=1

𝐲̅𝑗 + 𝐛𝑖)∑𝐖𝑖𝑗

𝑁

𝑗=1

𝐲̃𝑗]. 

𝑉𝜇(𝐱̃) is bounded by the 𝒦∞ functions 𝛼1(𝑟) and 𝛼2(𝑟) 

𝛼1(‖𝐱̃‖2) ≤ 𝑉𝜇(𝐱̃) ≤ 𝛼2(‖𝐱̃‖2), 

1

2
𝜆m(𝐏V)‖𝐱̃‖2

2 ≤ 𝑉𝜇(𝐱̃) ≤
1

2
𝜆M(𝐏V)‖𝐱̃‖2

2 + 2√𝑁⁡‖𝐖‖1‖𝐱̃‖2, 

where 𝜆m(𝐀) and 𝜆M(𝐀) are the smallest and largest Eigenvalues of the matrix 𝐀, respectively. 

Then, the network is ISS stable such that 

‖𝐱̃‖2 ≤ 𝛽(‖𝐱̃(𝑡0)‖2, 𝑡 − 𝑡0) + 𝛾 (sup
𝑡≥𝑡0

‖tanh(𝐕𝐮(t))‖2), 

with 𝛽(𝑟, 𝑠) a class 𝒦ℒ function, and 𝛾(𝑟) ∈ ⁡𝒦 given by 

𝛾(𝑟) = √
(1 + 𝜇2)⁡𝜆M(𝐏V)⁡𝑟2 + 4⁡√𝑁⁡‖𝐖‖1⁡√1 + 𝜇2⁡𝜆m(𝐏𝑉̇)⁡𝑟

𝜃2𝜆m(𝐏V)𝜆m(𝐏𝑉̇)2
. 

Here, 0 < 𝜃 < 0 ensures stability and 𝐏𝑉̇ = [
𝜇𝚪

1

2
𝜇⁡𝐄

1

2
𝜇⁡𝐄T 𝐄 − 𝜇⁡𝕀𝑁

]. Therefore, if the network is 

unactuated with sup
𝑡≥𝑡0

‖𝐮(t)‖2 = 𝟎, the system is globally asymptotically stable and converge to 

the equilibrium 𝐱̅ = [
𝐲̅

𝟎𝑁]. Otherwise, the deviation of the system state 𝐱̃ from the equilibrium 

will remain proportionally bounded w.r.t. 𝛾 (sup
𝑡≥𝑡0

‖tanh(𝐕𝐮(t))‖2). 
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4. Preliminary results on Archetype Networks 

In the following we report our preliminary results on Archetype Networks based on first order 

linear ODE units, therefore of the kind ℎ′⁡ + ⁡𝑎⁡ℎ = 𝑢,  with 𝑢 being the neuron-like connector 

as defined in Section 2.2 of Deliverable D3.1 or slight variations of it that modify its connectivity 

structure. In Section 4.1 we consider a neuron-like connector with a skew-symmetric structure 

inspired by Neural ODEs (Euler State Networks). In Section 4.2 we explore neuron-like 

connectors augmented with residual connections (Residual Recurrent Neural Networks). 

Finally in Section 4.3 we enforce in the neuron-like connector a connectivity pattern inspired 

by the brain (Continuously Deep Recurrent Neural Networks). We frame all these three models 

again in the RC framework to simplify the analysis. 

4.1. Euler State Networks 

As reported in Section 1.1 of Deliverable D3.1, an archetypical unit is an ODE. Here we 

propose an Archetype Network where a single unit is of the kind ℎ′⁡ = 𝑢 where 𝑢 is the neuron-

like connector defined in section 2.2 of Deliverable D3.1. In formula, we have in compact form 

the following ODE describing both units and connectors: 

𝐡′(𝑡) = 𝒇(𝐡(𝑡), 𝐮(𝑡))

⁡= tanh⁡(𝐖𝒉𝐡(𝑡) + 𝐖𝐮𝐮(𝑡) + 𝐛)⁡
 

To implement the continuous-time system above we choose the Euler discretisation scheme. 

We call the resulting architecture the Euler State Network (EuSN). We aim to design reservoir 

dynamics that are both stable and non-dissipative by construction, so to provide an Archetype 

Network biased to long-term propagation of information. The key mathematical insight is to 

parametrise the recurrent matrix as follows: 

𝐖ℎ = 𝐒ℎ − 𝛾𝐈, 

where 𝐒ℎ is a skew-symmetric matrix, 𝐈 the identity, and 𝛾 a diffusion term, so that the EuSN 

state update dynamics (discretised with time step 𝜀) reads 

𝐡(𝑡) = 𝑭(𝐡(𝑡 − 1), 𝐮(𝑡))
= 𝐡(𝑡 − 1) +

𝜀tanh⁡((𝐒ℎ − 𝛾𝐈)𝐡(𝑡 − 1) + 𝐖𝐮𝐮(𝑡) + 𝐛).
 

We refer to [74] for the details of the mathematical derivation. Experiments on long-term 

memory tasks show the clear superiority of the proposed approach over standard RC models 

in problems requiring effective propagation of input information over multiple time steps. In the 

next section, we briefly report an experiment showing the effectiveness of EuSN in long-term 

memorization. 

 

Long-term memorization 

We test EuSN on a set of time-series classification tasks to assess the long-term memorization 

(LTM) capabilities of recurrent layers, basically padding with noise time series to make more 

challenging the classification. The general aim is to exercise the ability of neural networks to 

correctly classify an increasingly long input time-series based on the presence of specific 
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patterns injected into the sequence at arbitrary points in time. The recurrent layer must be able 

to effectively latch input information into the state representations over long time spans, as the 

information relevant to the target becomes increasingly distant from the input suffix, posing a 

relevant challenge for RC-based systems. 

In the following we report the results of 4 tasks. We refer to [74] for the details of the 

experimental setting. 

 

Results 

The results on the LTM tasks are reported in Figure 12, which shows the test set accuracy 

achieved by EuSN, ESN and and R-ESNs [75], for increasing values of the total length of 

padded sequences. Each plot in Figure 12 corresponds to one of the LTM tasks considered 

in this study. As it is evident, the performance shown by EuSN is consistently better than that 

of ESN and R-ESN. In general, it can be observed that the level of accuracy obtained by all 

models decreases as 𝑇 increases. Crucially, the accuracy of EuSN decreases slowly and 

remains high even for high values of 𝑇, indicating an effective propagation process of 

taskrelevant information even after hundreds of time-steps. In contrast, consistent with its 

fading memory characterization, ESN (and R-ESN) shows a rapidly degrading performance. 

For example, in the case of the Synthetic task, ESN's accuracy is close to the chance level 

(i.e., ≈ 0.5 ) after a few hundred time-steps. 

Overall, results in Figure 12 indicate that EuSN can propagate the input information effectively 

in tasks requiring long-term memorization abilities, overcoming the fading memory limitations 

that are typical of ESN variants. 

 

 

Figure 12. Accuracy achieved on the LTM tasks by EuSN for increasing the length of the total length of padded 

sequences 𝑇 (higher is better). Results are compared to standard ESN and R-ESN. For each value of 𝑇, the plots 
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report the accuracy values averaged over the 10 random instances and the corresponding standard deviation as 
a shaded area. 

4.2. Residual Recurrent Neural Networks 

Similarly to the Archetype Network of the previous section (Euler State Networks), here we 

explore an Archetype Network based on linear units of the kind ℎ′ + 𝑎ℎ⁡ = ⁡𝑢 , where 𝑢 is the 

neuron-like connector augmented with residual connections. Residual networks (ResNets) are 

a type of deep neural network that uses skip connections [43]. Skip connections allow the 

network to learn the residual mapping between the input and output of a layer, instead of the 

direct mapping. This makes the network easier to optimise and enables the training of very 

deep architectures. Despite their success, little has been explored in the context of RNNs. We 

investigate the architectural bias of residual connections in the temporal dimension of RNNs, 

considering the simplest case of a single layer residually connected with itself in the temporal 

dimension at the previous time step. We address the problem of effective information 

propagation considering skip connections that linearly propagate the network state to the next 

time step (an idea also supported by biological plausibility [76]). To maximise the information 

content of the time-propagated state memory, the residual recurrent connections are 

modulated by an untrained orthogonal weight matrix, thus exploiting, in an RNN context, the 

optimal memory properties of this type of dynamic neural systems. 

Precisely, we introduce a class of RC models based on linear skip connections in the state 

processing and called Residual Echo State Network (ResESN) [5]. 

The state transition function of the residual network is given as follows: 

𝐡(𝑡) = 𝛼𝐎𝐡(𝑡 − 1) + 𝛽⁡tanh(𝐖𝐡𝐡(𝑡 − 1) + 𝐖𝐮𝐮(𝑡) + 𝐛). (13) 

where 𝐎 is a randomly generated orthogonal matrix, and 𝛼, 𝛽 are scaling coefficients that we 

treat as hyperparameters. The matrix 𝐎 can be generated by taking the orthogonal matrix 

resulting from the QR decomposition of a random matrix 𝐌 of dimension 𝑁ℎ × 𝑁ℎ with i.i.d. 

entries in (-1,1). The values of 𝛼 and 𝛽 can be used to adjust the dynamic behaviour of the 

reservoir. All other terms in eq. (13) above are the same as in eq. (1) of the standard Leaky 

ESN model. Notably, the proposed model inherits the advantage of being fast to train from the 

RC paradigm.  

As already stated above, eq. (13) of a ResESN can be interpreted as a generalisation of the 

neuron-like connector of EuSN, with the additional freedom of tuning the trade-off between 

linearity and nonlinearity via the two hyperparameters 𝛼 and 𝛽. An alternative interpretation is 

to view the ResESN as a linear Archetype Network of continuous-time equations: 

𝐡′(𝑡) ⁡= ⁡𝐀𝐡(𝑡) + 𝐔,  

where 

𝐀⁡ = (𝛼𝐎⁡ − ⁡𝐈)/𝛽,  

with 𝐎 an orthogonal matrix and 𝐈 the identity, and 𝐔 a neuron-like connector of the standard 

following form 

𝐔 = ⁡tanh(𝐖𝐡𝐡(𝑡 − 1) + 𝐖𝐮𝐮(𝑡) + 𝐛),  
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where 𝐮(𝑡) is the external input. This ODE, when discretised with the Euler scheme with time 

step 𝛽, brings to eq. (13). 

Intuitively, considering the application of the recurrent layer over time, the introduction of the 

skip connections in the additive part of Eq. (13) (first term on the right-hand side) allows the 

creation of a path for the long-term propagation of the input information. This concept is 

illustrated graphically in Figure 13 below. 

 

Figure 13.  Left: representation of a single layer reservoir computing architecture. In orange is the recurrent 
computational cell, and in green is the trainable readout. Right: scheme of the recurrent computational cell of a 
ResESN. For simplicity, the bias vectors are not shown in the figure. 

 

 

Here we just report a summary of the theoretical results that we derived for ResESN. We 

notice that due to the orthogonal structure of 𝐎, the eigenvalues of the 𝛼𝐎 term of eq. (13) are 

distributed in the complex plane over a circle of radius 𝛼 centered at the origin. Therefore, we 

can locate the position of the eigenvalues of the complete Jacobian as being at maximum 

distance 𝛽∥∥𝐖𝐡∥∥ from those of 𝛼𝐎, i.e., within a 𝛽∥∥𝐖𝐡∥∥-tube around the circle of radius 𝛼. This 

remark allows for a precise estimation of the ResESN spectrum, which can be made as close 

as we want to the edge of stability represented by the unitary circle, see Figure 14 below. 
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Figure 14. Eigenvalues of the resulting Jacobian in reservoirs with 𝑁ℎ = 500 recurrent neurons driven by a random 

uniform input vector in (-1,1) for various hyperparameter's values 𝛼, 𝛽, ∥∥𝑾𝒉∥∥, and assuming zero bias 𝜔𝑏 = 0, and 

𝜔𝑥 = 1. In orange the unitary circle. 

The hyperparameter 𝛼, in this context, makes it possible to decide how close to be to this 

boundary, with a value of 𝛼 = 1 yielding the boundary condition, see middle plots of the first 

row of Figure 14. At the same time, the hyperparameter 𝛽, together with the magnitude of the 

weights of 𝐖𝐡, determines perturbations to the eigenvalues of 𝛼𝐎, allowing a wider range of 

dynamics to be covered. In the Figure 14 above ResESNC represents a ResESN model with 

a (deterministc) simple cycle orthogonal matrix in place of a random orthogonal matrix, while 

ResESNI is a ResESN with the identity matrix as orthogonal matrix. 

 

Experiments 

We test our proposed approach on few classification and regression benchmark tasks 

covering both synthetic and real-world datasets.  

Memorisation capability 

Here we measure how effectively the models can recall past inputs and exploit them for 

computational purposes. First we compute the memory capacity of the models (MemCap 

task), evaluating the ability to reconstruct a delayed random signal. Then we test the models 

on 2 more challenging tasks. The former requires reconstructing a sinusoidal transformation 

of the delayed input. Thus we call it SinMem task. The latter can be interpreted as a continuous 

extension of a XOR task with delayed inputs. Thus we call it CtXOR task.  

Discussion. As evident from Table 9 below, in all three memory-based tasks considered, the 

architectural bias induced by random orthogonal and simple cycle variants of ResESN gives 

a substantial advantage. The MemCap task reveals the outstanding capacity of memory 

retention of the ResESN variants with a random orthogonal matrix, and even more the simple 

cycle matrix. Note that, for a reservoir of 100 neurons the memory capacity as defined in the 

MemCap task has been proved [77] to be at most 100, hence these models are extremely 

close to the theoretical maximum. Finally, ResESN outperforms standard ESN variants by 2 

orders of magnitudes on the SinMem task.  
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Table 9. Results on the memorisation capability tasks. Mean and standard deviation over 10 different initialisations 
of RC models of 100 neurons. The arrows on the left inform whether larger (up) or smaller (down) values indicate 
better performance for each task. For each task, the best overall is underlined, while the top two results are 
highlighted in blue. 

 
 

Time series classification 

We experimentally validate the proposed residual RC models on a set of diverse time series 

classification benchmarks from the UEA & UCR repository (www.timeseriesclassification.com) 

plus the popular sequential MNIST (sMNIST) classification task. 

We perform the classification of time series by exploiting only the last reservoir state as input 

for the readout classifier. The results given in Table 10 show the achieved accuracy scores, 

averaged over the random guesses with their empirical standard deviations. In addition to the 

accuracy scores on the individual tasks, we provide the resulting average rankings of the 

assessed models on the whole set of classification tasks in the histograms in Figure 15. For 

each of the 17 classification tasks we rank all the seven RC models assigning 1 point to the 

model achieving the larger test accuracy, 2 points to the second, and so on up to the seventh. 

Then the resulting scores are divided by 17. The lower the better. 

Discussion. The values shown in the Table 10 below highlight the striking advantage of the 

class of models proposed here over traditional RC. Moreover, the accuracy achieved by the 

models in the residual class is substantially similar to the level achieved by EuSN. In this 

context, note that the ResESNs (and variants) perform equally well in the memorisation, where 

EuSNs perform significantly worse. From the average rankings of Figure 15, we conclude that 

the residual models together with EuSN form a distinctive clique of best performing models, 

posing them at a superior level for classification scopes with respect to other RC approaches.  

Table 10. Accuracy results achieved on the time series classification tasks (the higher the better in all cases). The 
table reports the mean accuracy and standard deviation over 10 different initialisations of reservoir models. For 

each task, the best overall is underlined, while the top two results are highlighted in blue. 

 

http://www.timeseriesclassification.com/
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Figure 15. Average ranking across time series classification tasks (the lower the better). Our proposed residual 
models are highlighted in blue. 

 

4.3. Continuously Deep Recurrent Neural Networks 

In this preliminary work (preliminarily described in [6]) we explored further the role of the 

neuron-like connector promoting a spatial locality pattern of connectivity in a recurrent 

network. In fact, unlike feedforward neural networks, RNNs spatially encode temporal features 

of the input in their hidden state allowing for context-dependent computation, a key feature of 

prefrontal cortex microcircuits. Cortical networks in the brain exhibit hierarchies of temporal 

processing likely due to the structural organization of the cortex, which is dominated by neural 

connection probability diminishing exponentially with distance. This motivates the study of 

Archetype Networks whose connectivity topology is similarly constrained by such exponential 

distance rules.  

We introduce a novel class of RC-based architectures called Continuously-Deep ESN 

(CDESN). Our proposal allows the design of biologically plausible ESNs characterized by local 

connections among neurons based on an exponentially decaying rule while modulating the 

depth of the internal information processing via a single hyperparameter of the C-DESN 

model. We show in the following section that we can interpret this local connectivity as the 

application of a particular connector on the archetypical RNN units. Unlike the deep 

architectures previously explored in the RC literature, as DeepESN [78], and fundamentally 

based on the concept of a pool of "discrete" recurrent layers nested one inside the other, the 

recurrent architecture of the model proposed here presents a more nuanced and "continuous" 

concept of layering. A graphical representation of CDESN architecture is shown in Figure 16. 
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Figure 16. An example of C-DESN architecture. The external input drives the dynamics of the internal reservoir. 
Along the recurrent architecture, the distance between the hidden neurons and the external input source increases 
continuously. Only the readout connections are trained. 

 

Our proposal is to consider a neuron-like connector of the following kind: 

𝐔 = 𝜎(𝐖̂𝒉(𝛽)𝐡(𝑡 − 1) + 𝐖̂𝐮(𝛽)𝐮(𝑡)), 

where 𝐖̂𝒉(𝛽) = exp[−𝛽𝐃𝒉] ⊙ 𝐖𝒉, and 𝐖̂𝐮(𝛽) = exp[−𝛽𝐃𝐮] ⊙ 𝐖𝐮, and ⊙ represents the 

component-wise multiplication of matrices (also called Hadamard product), i.e. (𝐀 ⊙ 𝐁)𝑖𝑗 =

(𝐀)𝑖𝑗(𝐁)𝑖𝑗. Here, exp⁡[𝐌] denotes the component-wise exponentiation of all the entries of the 

matrix 𝐌, i.e. (exp[𝐌])𝑖𝑗 = 𝑒(𝐌)𝑖𝑗, not to be confused with the matrix exponential. The two 

matrices  𝐃𝒉and 𝐃𝐮 are defined as follows: 

𝐃𝒉 =
1

𝑁ℎ − 1

[
 
 
 
 

0 1 2 … 𝑁ℎ − 1
1 0 1 … 𝑁ℎ − 2
2 1 0 … 𝑁ℎ − 3
⋮ ⋮ ⋮ … ⋮

𝑁ℎ − 1 𝑁ℎ − 2 𝑁ℎ − 3 … 0 ]
 
 
 
 

, 

𝐃𝐮 =
1

𝑁ℎ − 1
[

0 0 … 0
1 1 … 1
⋮ ⋮ … ⋮

𝑁ℎ − 1 𝑁ℎ − 1 … 𝑁ℎ − 1

]. 

The structure of these two matrices encodes a local connectivity patter among the units of the 

network. In fact, the entries (𝐃ℎ)𝑖𝑗 represent the discrete distance between the 𝑖-th neuron 

and the 𝑗-th neuron, normalized by the total number of neurons. Therefore, the mask 

exp[−𝛽𝐃ℎ] applied on the matrix 𝐖ℎ has the effect of reducing the off-diagonal elements, 

giving values approaching 0 when pushing 𝛽 → +∞. Large values of 𝛽 force an exponentially 

weak coupling between 𝑖-th and 𝑗-th neurons if |𝑖 − 𝑗| is large. This promotes the emergence 

of an effective depth in the recurrent architecture as a function of 𝛽. For this reason, we dub 

the hyperparameter 𝛽 the continuous depth (or just depth) of the model. Similarly, the mask 

exp[−𝛽𝐃𝐮] for the input-to-hidden matrix 𝐖𝐮, produces an architecture in which the units are 

located at progressively greater distances from the point where the input signal is injected. 

Note that we use the same hyperparameter 𝛽 for masking both the hidden-to-hidden and the 

input-to-hidden matrices. The element-wise multiplication with the two matrices exp[−𝛽𝐃ℎ] 
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and exp[−𝛽𝐃𝐮] produce a specific neuron-like connector (as defined in section 2.2 of 

deliverable D3.1) that takes into account a notion of distance between the units of the network. 

This connector weakens exponentially the couplings among the units that are far from each 

other according to a predefined order of the units in the network. 

In the next section, we report a preliminary experiment on time series reconstruction for an 

Archetype Network defined as follows: 

𝐡(𝑡) = 𝜎(𝐖̂ℎ(𝛽)𝐡(𝑡 − 1) + 𝐖̂𝐮(𝛽)𝐮(𝑡)), 

that is, directly through the neuron-like connector discussed above. 

 

Time series reconstruction 

In this set of experiments we consider four real-world collection of sequences. Arabic [79] is a 

collection of audio sequences spoken in Arabic from different speakers. Blink [80] is a 

collection of 4-channels EEGs recorded on different subjects during eye blinking. Epilepsy [81] 

is a collection of accelerometer data on the dominant wrist collected on different subjects 

during normal activities and during seizures. Finally, Phoneme [82] is a collection of 

segmented audio phonemes by different speakers. 

We evaluate the ability of C-DESNs to reconstruct previous inputs 𝐮(𝑇 − 𝜏) at different delays 

𝜏 > 0 from the final state 𝐡(𝑇). In the Figure 17 below we report curves of the test set mean 

squared error (MSE) of the reconstructed inputs for different delays and different values of 𝛽. 

In all four tasks we notice a valley around the optimal value of 𝛽, evidenced with the red line 

in the plots of Figure 17; the corresponding connectivity patterns are reported on the right. 

This behaviour is most pronounced on the Blink task, where reconstruction delays up to 50 

are considered, and the optimal 𝛽 is ≈ 21.55. In the remaining tasks in which we considered 

delays up to 8 − 12, the valley around the optimum is less pronounced, and the optimal value 

is a slightly smaller 𝛽 ≈ 6.00. These choices of 𝛽 correspond to a trade-off between depth and 

width in the connectivity patters of C-DESNs: (a) for larger values of 𝛽 the units become poorly 

connected to each other, and in the limit completely disconnected for 𝛽 → ∞ as the recurrent 

matrix 𝐖ℎ becomes diagonal; while (b) for smaller values of 𝛽 the connectivity looses depth, 

and thus the ability to hold longer history on the input sequence as observed in previous 
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sections. 

 

Figure 17. Reconstruction of delayed inputs on four real-world tasks by C-DESN with 100 units. The connectivity 
of the best 𝛽 highlighted with the red bar on left plots is displayed on the right of each task. 

 

5. Preliminary analysis on the Archetype Adapting System 

The archetype computing system provides the theoretical and methodological framework to 

compute with archetypes. The archetype adapting system allows to train archetype units and 

networks to reach a predefined goal.  

While the archetype adapting system is planned to be fully developed later in the project, we 

already started to explore some of its related challenges.  

5.1. Learning to reject 

Maximizing the predictive accuracy of a model is one of the main objectives pursued during 

training of machine learning models. However, in all interesting cases models never reach a 

perfect predictive accuracy. We are interested in designing models that can tell whether they 

are likely to provide a good prediction [83]. Otherwise, the model can refuse to make a 

prediction, since it would likely lead to a mistake [84]. This ability to learning to reject or to 
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selectively classify is a useful property both for real-world applications and for the study of 

metacognition, where a model is aware of its inner state. 

Given a model 𝑓 parameterized by θ, its output on an input 𝑥 is represented by 𝑦̂ = 𝑓θ(𝑥). The 

model can reject an example if its confidence 𝑐 is smaller than a threshold: 𝑐 < 𝑐∗. 

The confidence can be computed in different ways. We experimented with two methods: the 

maximum probability and the Deep Gamblers methods [85]. 

We trained a ResNet 101 to recognize a given set of objects from images. We chose the 

CIFAR-100 dataset and we trained the ResNet with cross-entropy loss and gradient descent.  

For the maximum probability method, the ResNet output 𝑦̂ is a vector of probabilities 

associated with each possible object class. The class that shows the largest probability is 

taken as the final prediction. We selected the maximum probability as the model confidence 

[84]. We then compute the coverage curve: we sorted all the examples in the test set of CIFAR-

100 in descending order based on the confidence computed by the model. Then, we took the 

first X% of the ordered dataset and we compute the average accuracy on all the examples, 

for different values of X. The coverage curve is monotonically decreasing, since as X grows, 

the model is considering examples which it is less confident on. 

We compare the coverage curve of the maximum probability confidence with the same curve 

computed by the Deep Gamblers method [85]: a method which is specifically designed to learn 

accurate confidence values. Deep Gamblers modifies the cross-entropy loss by computing: 

𝐿(𝑦̂, 𝑦) = ∑𝑦

𝑚

𝑖=1

𝑙𝑜𝑔(𝑦𝑖̂ + 𝑜⁡𝑦𝑚+1̂) 

where 𝑦̂ is the probability vector computed by the model for all 𝑚 classes and 𝑦 is the target 

class corresponding to the input 𝑥 fed to the model. The output layer in Deep Gamblers has 

𝑚 + 1 units. In fact, Deep Gamblers reserves a special unit for the rejection phase: the value 

of the unit represents the rejection probability. Hence, we take the confidence to be 1 − 𝑦𝑚+1̂. 

The scalar hyper-parameter 𝑜 is chosen by model selection on a held-out validation set and it 

represents the preference of the network towards predicting instead of rejecting. Setting 𝑜 = 0 

recovers the cross-entropy loss. 

The maximum probability method reached an accuracy of 64% on the test set and an accuracy 

of 97% on the training set. Deep Gamblers reported a training accuracy of 61% and a test 

accuracy of 43%. Both models show over-fitting and Deep Gamblers struggle to learn properly. 

We report the coverage curve obtained by the best models on the test set. 
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Figure 18. Validation coverage curve. Red curve = Deep Gamblers. Green curve = maximum probability. 

From Figure 18 we see how the Deep Gamblers is unable to maintain a good performance for 

different confidence level. This hints at the fact that learning a separate confidence unit like 

Deep Gamblers does is much more challenging than leveraging a built-in confidence value, 

like with the maximum probability method.  

We leverage these preliminary findings and turn our attention to the calibration challenge. To 

build calibrated models, we always rely on the maximum probability confidence. 

 

5.2. Lifelong Calibration 

Learning to reject methods like Deep Gamblers can optimize the accuracy for a given 

coverage by learning ad-hoc confidence values. However, the confidence value is not 

guaranteed to be calibrated [83]. A model is calibrated when its confidence also represents 

the average prediction accuracy scored by the model on the examples with that confidence. 

Formally, a model is calibrated when on any given input-target pair (𝑥, 𝑦) 

𝑝(𝑦̂ = 𝑦|⁡𝑐 = 𝑐̂) = 𝑐̂ 

When a model is calibrated, the confidence represents a true probability of correct predictions. 

Since the confidence 𝑐 is a continuous random variable, the probability cannot be exactly 

computed by any finite number of examples. Calibration approaches approximates the 

calibration objective in different ways.  

We follow the reliability diagram approach. The reliability diagram groups the model 

predictions on a given set of data according to M interval bins based on the confidence. Then, 

it computes the average accuracy for each bin. A model is then considered calibrated if the 

average accuracy for each bin is equal to the middle bin value. We can concisely express 

calibration through the Expected Calibration Error (ECE): 
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𝐸𝐶𝐸 = ∑
|𝐵𝑖|

𝑛

𝑏

𝑖=1

|𝑎𝑐𝑐(𝐵𝑖) − 𝑐𝑜𝑛𝑓(𝐵𝑖)| 

where |𝐵𝑖| is the number of examples contained in the i-th bin of the reliability diagram, 𝑛 is 

the total number of examples in the dataset and 𝑎𝑐𝑐(𝐵_𝑖), 𝑐𝑜𝑛𝑓(𝐵_𝑖) are the average accuracy 

and confidence over the examples contained in the i-th bin, respectively. The ECE is zero only 

when the model is perfectly calibrated on the dataset. Since both the accuracy and the 

confidence are between zero and one, the ECE (worse possible calibration) is always smaller 

than 1. The ECE is usually reported as a percentage by multiplying it by 100. 

Calibrating models on a given dataset is a well-known field of research. However, calibration 

is under-explored with artificial neural networks and there is no work focusing on lifelong 

calibration. This is a very promising topic, since a model that learns continuously over time 

needs also to adjust its calibration according to the dynamics of the environment.  

We adopt a lifelong learning setup [86] where the model is trained on a sequence of 

experiences 𝑒1, 𝑒2, …. Each experience 𝑒𝑖 contains a training dataset 𝐷𝑖
𝑡𝑟 and a validation 

dataset 𝐷𝑖
𝑣𝑙. The test dataset associated to each experience is always available, while the 

training and validation datasets are only available when training on that experience. The 

objective is to train the model on all experiences and to preserve the predictive performance 

while keeping the model calibrated. 

We started exploring lifelong calibration by selecting some of the calibration methods for 

artificial neural networks and some of the most effective lifelong learning strategies.  

Table 11.  Accuracy of calibration methods with CL strategies on a set of CL benchmarks. J=Joint, E=entropy 
regularization, TS=temperature scaling, MS/VS=matrix/vector scaling, R=replay, N=Naïve, MD=mixed data. 
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Entropy calibration.  The entropy calibration method [87] regularizes the loss by adding a 

component that controls the entropy of the output layer of the network. The penalization term 

reads: 

−𝜆 ∑𝑦𝑖̂ log(𝑦𝑖̂)

𝑚

𝑖=1

 

where the hyper-parameter λ controls the regularization strength. 

Temperature scaling. The temperature scaling method [83] is a post-processing method that 

is applied at the end of each experience in continual learning. The probabilities computed by 

the output layer of the network are obtained through a softmax function. If we divide the input 

to the softmax (the logits) by a factor T (called the temperature), we can control the 

smoothness of the resulting probability distribution. Peaked probability distributions often 

corresponds to uncalibrated models. The temperature scaling method learns via 

backpropagation the optimal temperature value. The optimization is performed on the 

validation set of the current experience and the loss is the Negative Log Likelihood loss. 

Matrix/vector scaling. These two approaches are post-processing approaches that, like the 

temperature scaling, are applied at the end of each experience on the validation set of the 

current experience [83]. The approaches learn an additional linear layer after the output layer 

of the network. The matrix 𝑊𝑐𝑙𝑏 and the bias 𝑏𝑐𝑙𝑏 are optimized with respect to the Negative 

Log Likelihood loss. To avoid a quadratic dependence on the number of classes, the vector 

scaling variant learns a vector 𝑤𝑐𝑙𝑏 instead of a full matrix. 

Mixed data. We specifically designed a novel calibration approach for lifelong learning. 

Instead of applying existing post-processing calibration approaches on the current validation 

set, we couple them with a replay strategy that stores a subset of previous validation sets into 

an external memory. In this way, the calibration approach also tunes the temperature or the 

additional linear layer on previous data distributions, thus improving the stability of the 

calibration when learning multiple data distributions over time.  

We combine the aforementioned approaches with a naïve finetuning, that simply trains the 

model continuously on all experiences, and a replay approach that leverages a fixed-size 

external memory on which it stores a subset of previous examples. At training time, the 

examples in the memory are combined with the examples from the current training set, to 

mitigate forgetting. 

We also provide results for the Joint Training, that simulates offline learning by concatenating 

all the experiences together into a single dataset. 

We report the average accuracy (Table 11) and ECE (Table 12) on the test set of all 

experiences after training on all experiences. 

We adopt 4 lifelong learning benchmarks. 

Split MNIST/CIFAR-100. The object recognition datasets MNIST [88] and CIFAR-100 [89] are 

split into 5 and 10 experiences, respectively, by randomly selecting a subset of the classes for 

each experience (without replacement. 

EuroSAT. EuroSAT is an object recognition dataset from satellite images. We built a lifelong 

learning stream composed by 5 experiences by randomly splitting the available classes into 5 

non-overlapping subsets. 
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Atari. We selected environment transitions from 3 Atari games and we trained continuously a 

network to choose the best action given the transition (environment state, action to be 

predicted, reward after the action, next environment state). The output space is composed by 

all Atari actions, but on each game only a subset of the actions is available. 

The preliminary results show that the ability of existing calibration strategies is seriously 

harmed in a lifelong learning environment. The ECE always increases with respect to the Joint 

Training performance if no ad-hoc approaches are employed.  

Our mixed data approach helps in preserving a better calibration over the course of training, 

but sometimes this comes at the cost of a reduced predictive performance (lower average 

accuracy). This is an important trade-off that occurs in many experiments: prioritizing a 

calibrated model impacts negatively on the final accuracy.  

In the future, we plan to focus on the design of novel calibration strategies for lifelong learning 

that can find a better accuracy-calibration trade-off than existing approaches.  
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Table 12. Expected Calibration Error (ECE) of calibration methods with CL strategies on a set of CL 
benchmarks. J=Joint, E=entropy regularization, TS=temperature scaling, MS/VS=matrix/vector scaling, 
R=replay, N=Naïve, MD=mixed data 
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6. Software Framework: design considerations of the ACDS 

Python library 

 

Figure 19. Archetype Computing and Adaptive System library from GitHub 

The Archetype Computing and aDaptive System (ACDS) library (Figure 19) is a shared 

codebase that collects the utilities to build and assess the performance of Archetype Networks. 

The library is developed by following a modularity principle that i) fosters (re)usability, ii) allows 

fast prototyping and iii) ensure reproducibility.  

Modularity. Separation of concerns is achieved by implementing different sets of 

functionalities into different, separate modules. The library is currently composed of 3 

modules: 1) archetypes, 2) benchmarks, 3) experiments.  

The archetypes module provides all the available archetypes units and networks. The module 

is independent from the rest of the library and can be used as a standalone component in 

external projects. 

The benchmarks module allows to load datasets that can be later used to assess the 

performance of the archetypes. Like the archetypes module, the benchmarks module is also 

a standalone component that can be easily used outside the library. 

The experiments module leverages on the previous two modules to build fully-fledged 

experiments. A typical experiment creates an instance of an archetype, loads a dataset and 

runs the archetype on the dataset. The experiment can include a learning phase in which the 

archetype’s parameters are adapted to the specific dataset. The experiments module cannot 

be used as an independent component, since it heavily relies on the other modules of the 

ACDS library. 
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(Re)usability. The modular architecture of the ACDS library allows to easily combine and 

reuse components in different experiments. Each archetype and each benchmark is 

implemented only once and then reused across different experiments. Also, modularity 

positively affects usability, since it is always clear where each component comes from. 

Fast prototyping. The library allows to quickly experiment with new archetypes and new 

datasets. For example, as soon as a new archetype is defined, it can be implemented in the 

archetypes module and then added to any experiment. The same process works for a new 

dataset. Whenever a new archetype-benchmark combination is needed, one can create and 

run a new experiment.  

Reproducibility. The library guarantees that any documented result involving archetypes can 

be easily verified and reproduced. In case an experiment requires some input parameter, it is 

sufficient to share the exact experiment configuration to get the same results. The code is 

released as an open-source project. As such, its changes are public and they can be easily 

monitored and inspected. 

Preliminary implementation. The ACDS library is publicly available on GitHub, preliminarily 

via the following link: https://github.com/EU-EMERGE/archetype-computing-adaptive-system 

The ACDS library is being developed in Python. The library can already be used to run 

experiments with the RON archetype on a set of popular benchmarks, commonly used for 

sequence processing. The benchmarks include both time series forecasting and sequence 

classification datasets. The library also implements models that are not necessarily 

archetypes. This is useful to compare the performance of archetypes like RON with other 

existing models, like the Echo State Network and the Long Short-Term Memory network.  

6.1. ACDS components 

The library offers three packages: archetypes, benchmarks and experiments, as showed 

below. 

├───acds: the core of the ACDS library 

│ └───archetypes: module containing archetypes and baselines models  

│     └───esn: the Echo State Network baseline 

│  └───lstm: the Long Short-Term Memory baseline 

│            └───ron: the Random Oscillators Network archetype 

│           └───utils: utility functions for archetypes 

│ └───benchmarks: module containing the main datasets and benchmarks 

│     └───adiac: the Adiac dataset implementation 

│      └───dataset 

│      └───getter 

│     └───mackey_glass: the Mackey Glass dataset implementation 

│     └───mnist: the MNIST dataset implementation 

│  └───rc_dataset: a dataset class for Reservoir Computing models 

├───experiments: module that runs archetypes and baselines on a given benchmark 

│ └───adiac: experiment on the Adiac dataset 

│ └───mackey_glass: experiment on the Mackey Glass dataset 

│ └───smnist: experiment on the sequential MNIST dataset 

 

Archetypes. The archetype package implements the Echo State Network model, the Long 

Short-Term memory model, and the Random Oscillators Network model. The first two models 

are not Archetypes. Rather, they are used as baselines (established within the deep learning 

https://github.com/EU-EMERGE/archetype-computing-adaptive-system
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community) for comparison with respect to the Archetypes (like RON). Each model is 

implemented as a Python class using the PyTorch library5. The archetypes package defines 

the way each archetype performs computation and it is therefore at the center of the Archetype 

Computing System. Moreover, the archetype package also provided utility functions that 

influence the archetype computation. For example, currently available functions can create 

sparsely connected Archetype Networks or control the topology of the connections (ring 

topology, Toeplitz topology and others). 

Benchmarks. The benchmarks package allows to easily create an instance of popular 

datasets and benchmarks. Currently, the package features the MNIST dataset, the Mackey-

Glass chaotic dynamical system and the Adiac dataset (a real-world time series processing 

task).  

The datasets are currently implemented via helper functions. Each dataset has its own helper 

functions that returns the training set, the validation set and the test set randomly sampled 

from the dataset. Each set is a PyTorch compatible dataset or dataloader, that automatically 

manages multiple iterations with mini-batches. Each dataset can implement a custom way of 

splitting the examples in the three sets. From the point of view of the user, this does not impact 

neither on the archetypes nor on the experiment where the dataset is then used. 

Experiments. The experiments package currently provides three experiments. Each 

experiment is a main Python script that can be executed by directly running it with a Python 

interpreter. The Adiac experiment uses the Adiac dataset and trains either an RON model or 

an ESN model. The choice of the model can be controlled by parameters provided as input to 

the main script. The experiments logs the results to a text file with the train and validation 

metrics. The test metrics can be computed when the corresponding flag is activated (to 

distinguish between model selection and model assessment). The sMNIST experiment follows 

the same approach, but it leverages the MNIST dataset, taken one pixel at a time (sequential 

MNIST) due to the use of recurrent archetypes. Finally, the Mackey-Glass experiment uses 

the Mackey-Glass dataset and trains an RON model or an ESN model to predict future states 

given the current one. The logging functionalities remain the same across the three 

experiments. Each experiment describes all the accepted parameters at the beginning of the 

code. 

The library can easily be used by running the experiments contained in the experiments 

package. For ease of use, the library should be added to the PYTHONPATH environment 

variable, such that it behaves as any other installed Python libraries. Then, to run sMNIST with 

RON one simply runs (assuming the user is within the acds folder of the library): 

python experiments/smnist.py --ron  

Adapting the command to run other experiments is trivial, by just pointing to the desired 

experiment file and providing the desired parameters as input. 

The ACDS library will be extended over time to include new features and new modules. For 

example, the Archetype Adapting System will be progressively added to the library with a 

dedicated module. The module will implement learning algorithms, even beyond back-

propagation, to adapt the parameters of the archetypes.  

The final version of the library will provide the full Archetype Computing and Adaptive System. 

 
5 https://pytorch.org/ 

https://pytorch.org/
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7. Conclusions  

This deliverable outlines the initial efforts and achievements of Work Package 4 within the 

EMERGE project, focusing on the development and preliminary analysis of the Archetype 

Computing System (ACS). The document presents the conceptual framework for the ACS, 

emphasizing the innovative approach of utilizing Random Oscillators Networks (RON) and 

other neural-inspired models to enhance adaptive and lifelong learning capabilities. Moreover, 

initial findings on lifelong learning strategies offer insights into their applicability for 

recalibration and rejection tasks, representing preliminary and useful work in perspective of 

development efforts geared toward learning algorithms in ADS. This deliverable also includes 

a software library written in Python, which collects the utilities to build and evaluate the 

methodologies progressively included in the ACS and ADS. 

From a broader perspective, this deliverable contributes to fulfilling Milestone 2 of the project, 

by introducing the preliminary implementation of archetypes-based computing framework. At 

the same time, this deliverable is instrumental to set the stage for subsequent efforts in the 

project, including the development of the ADS as outlined in D4.2, the next deliverable of WP4. 
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8. Appendix A – Proof of mathematical results 

Proof of Theorem 3.1  

We will make use of the following lemma. 

Lemma B.1. Let be given two square matrices 𝐌,𝐍 of the same dimension. Then it holds 

that 

(i) ∥∥
∥[

𝐌 𝟎
𝟎 𝐍

]∥∥
∥ ≤ max(|𝐌 ∥, ∥ 𝐍| ∣, 

(ii) ∥∥
∥[

𝟎 𝐌
𝐍 𝟎

]∥∥
∥ ≤ max(∥ 𝐌 ∥, ∥ 𝐍 ∥). 

Proof. We notice that for any unitary vector 𝐗 = (
𝐲
𝐳
) it holds 

∥∥
∥[

𝐌 𝟎
𝟎 𝐍

] (
𝐲
𝐳
)∥∥
∥
2

=∥ 𝐌𝐲 ∥2 +∥ 𝐍𝐳 ∥2≤

≤ max(∥ 𝐌𝐲 ∥, ∥ 𝐍𝐳 ∥)2,
 

from which it follows that ∥∥
∥[

𝐌 𝟎
𝟎 𝐍

]∥∥
∥ ≤ max(∥ 𝐌 ∥, ∥ 𝐍 ∥). For the antidiagonal case, note that 

[
𝟎 𝐌
𝐍 𝟎

] = [
𝐌 𝟎
𝟎 𝐍

] [
𝟎 𝐈
𝐈 𝟎

], hence we have for any unitary vector 𝐗 = (
𝐲
𝐳
) that 

∥∥
∥[

𝟎 𝐌
𝐍 𝟎

] (
𝐲
𝐳
)∥∥
∥
2

= ∥∥
∥[

𝐌 𝟎
𝟎 𝐍

] [
𝟎 𝐈
𝐈 𝟎

] (
𝐲
𝐳
)∥∥
∥
2

≤ 

≤ max(∥ 𝐌 ∥, ∥ 𝐍 ∥)2 (∥∥
∥[

𝟎 𝐈
𝐈 𝟎

] (
𝐲
𝐳
)∥∥
∥
2

) =

= max(∥ 𝐌 ∥, ∥ 𝐍 ∥)2.
 

# 

Lemma B.1 allows us to prove Theorem 3.1 whose statement we report here below. 

Theorem. The norm of the Jacobian matrix of the hcoRNN and RON models admit the 

following upper bound 

∥∥𝐉𝑘∥∥ ≤ max(𝜂 + 𝜏2𝜎, 𝜉) + 𝜏max(𝜉, 𝛾max + 𝜎). 

In particular, for 𝜏 ≪ 1, and assuming 𝜀min > 0, and 𝛾max ≥ 1, the bound reads 

1 + 𝜏(𝛾max + 𝜎) + 𝑂(𝜏2). 

Proof. We decompose the Jacobian of a RON in the sum of two matrices, one diagonal one 

anti-diagonal, as follows 

𝐉𝑘 = [
𝐈 − 𝜏2dia g(𝛾) + 𝜏2𝐒𝑘𝐖 𝟎

𝟎 𝐈 − 𝜏dia g(𝜺)
] + [

𝟎 𝜏(𝐈 − 𝜏dia g(𝜀))
𝜏𝐀𝑘 𝟎

] . (29) 

The upper left block of the diagonal matrix in eq. (29) admits the following bound. 
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∥∥𝐈 − 𝜏2diag⁡(𝛾) + 𝜏2𝐒𝑘𝐖∥∥ ≤

≤ ∥∥𝐈 − 𝜏2diag⁡(𝛾)∥∥ + 𝜏2∥∥𝐒𝑘𝐖∥∥ ≤

≤ max
𝑗

 |1 − 𝜏2𝛾𝑗| + 𝜏2 ∥ 𝐖 ∥= 𝜂 + 𝜏2𝜎,
 

where we used the triangle inequality, and the fact that ∥∥𝐒𝑘𝐖∥∥ ≤∥ 𝐖 ∥, due to the definition 

of 𝐒𝑘. 

The bottom right block of the diagonal matrix in eq. (29), is itself diagonal, and admits the 

following exact estimation. 

||𝐈 − 𝜏diag⁡(𝜀) ∥= max
𝑗

 |1 − 𝜏𝜀𝑗| = 𝜉 

The upper right block of the diagonal matrix in eq. (29), is itself diagonal, and admits the 

following exact estimation. 

∥ 𝜏(𝐈 − 𝜏diag⁡(𝜀)) ∥= 𝜏max
𝑗

 |1 − 𝜏𝜀𝑗| = 𝜏𝜉. 

The bottom left block of the diagonal matrix in eq. (29) admits the following bound. 

∥∥𝜏(𝐒𝑘𝐖 − diag⁡(𝛾))∥∥ ≤ 𝜏(∥∥𝐒𝑘𝐖∥∥+∥ diag⁡(𝛾) ∥) ≤

≤ 𝜏(∥ 𝐖 ∥ +𝛾max) = 𝜏(𝜎 + 𝛾max).
 

Putting together all the relations above, and Lemma B.1, we obtain 

||𝐉𝑘 ∥≤ max(𝜂 + 𝜏2𝜎, 𝜉) + 𝜏max(𝜉, 𝜎 + 𝛾max), 

which is the thesis. 

In particular, for small enough values of 𝜏 we have that 𝜏𝜀max ≤ 1, and 𝜏2𝛾max ≤ 1, which in 

turns imply that 𝜉 = 1 − 𝜏𝜀min, and that 𝜂 = 1 − 𝜏2𝛾min, respectively. Furthermore, assuming 

that 𝜀min > 0, and 𝛾max ≥ 1, we have that 𝜉 < 1 ≤ 𝜎 + 𝛾max. Therefore, the bound reads 

max(1 − 𝜏2𝛾min + 𝜏2𝜎, 1 − 𝜏𝜀min) + 𝜏(𝜎 + 𝛾max). 

Finally note that for 𝜀min > 0, and small enough 𝜏 ≪ 1 , we have that 𝜏2(𝛾min − 𝜎) < 𝜏𝜀min, 

and so that 1 − 𝜏𝜀min ≤ 1 − 𝜏2𝛾min + 𝜏2𝜎. Hence, the bound has the following expansion for 

small values of 𝜏 

1 + 𝜏(𝛾max + 𝜎) + 𝑂(𝜏2) 

# 

 

 

Contractivity for the particular case of 𝜺 ≡
𝟏

𝝉
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We already noticed that for the particular case of 𝜀 ≡
1

𝜏
 the 𝐳-dynamics of the hcoRNN and 

RON equations become unidirectionally driven by the 𝐲-dynamics. In such a case, we can 

focus only on the 𝐲-dynamics which reads 

𝐲𝑘+1 = (𝐈 − 𝜏2dia g(𝛾))𝐲𝑘 + 𝜏2tanh(𝐖𝐲𝑘 + 𝐕𝐮𝑘+1 + 𝐛) . (38) 

We provide the following sufficient conditions for contraction in the particular case of (38). 

Proposition C.1. In the particular case of 𝜀 ≡
1

𝜏
, the hcoRNN and RON models are 

contractive whenever 

(i) 𝜎 < 𝛾min, if 𝜏2(𝛾min + 𝛾max) ≤ 2; 

(ii) 𝜎 <
2−𝜏2𝛾max

𝜏2 , if 𝜏2(𝛾min + 𝛾max) > 2. 

Proof. The Jacobian of eq. (38) reads 𝐉𝑘 = 𝐈 + 𝜏2𝐀𝑘 = (𝐈 − 𝜏2diag⁡(𝛾)) + 𝜏2𝐒𝑘𝐖. Therefore, it 

holds || 𝐉𝑘 ∥≤∥ 𝐈 − 𝜏2diag⁡(𝛾) ∥ +∥ 𝜏2𝐒𝑘𝐖 ∥≤ 𝜂 + 𝜏2𝜎. Thus, || 𝐉𝑘 ∥< 1 holds whenever 𝜎 <
1−𝜂

𝜏2 . Finally note that, due to the definition of 𝜂, there are two possibilities, either 𝜂 = 1 −

𝜏2𝛾min, if 𝜏2(𝛾min + 𝛾max) ≤ 2, or 𝜂 = 𝜏2𝛾max − 1, if 𝜏2(𝛾min + 𝛾max) > 2. The first case 

implies the thesis of (i), while the second case implies the thesis of (ii). 

Note that, in order for (i) and (ii) to hold in Proposition C.1, two necessary conditions must 

hold, namely 𝛾min ≥ 0, and 𝜏2𝛾max ≤ 2. 

# 

 

Sufficient conditions for a contractive RON 

Proposition D.1. Sufficient conditions. If 
𝜉−𝜂

𝜏2 ≤ 𝜉 − 𝛾max then the hcoRNN and RON models 

are asymptotically uniformly stable whenever one of the following three conditions holds: 

⋅ 𝜎 ≤
𝜉−𝜂

𝜏2 , and 𝜉 <
1

1+𝜏
, 

• 
𝜉−𝜂

𝜏2 < 𝜎 ≤ 𝜉 − 𝛾max, and 𝜎 <
1−𝜏𝜉−𝜂

𝜏2 , 

• 𝜎 ≥ 𝜉 − 𝛾max, and 𝜎 <
1−𝜂−𝜏𝛾max

𝜏(1+𝜏)
. 

If 𝜉 − 𝛾max <
𝜉−𝜂

𝜏2  then the RON model is stable whenever one of the following three 

conditions hold: 

• 𝜎 ≤ 𝜉 − 𝛾max, and 𝜉 <
1

1+𝜏
, 

• 𝜉 − 𝛾max < 𝜎 ≤
𝜉−𝜂

𝜏2 , and 𝜎 <
1−𝜉

𝜏
− 𝛾max, 

• 𝜎 ≥
𝜉−𝜂

𝜏2 , and 𝜎 <
1−𝜂−𝜏𝛾max

𝜏(1+𝜏)
. 

Proof. Recall the upper bound of the Jacobian found in Theorem 3.1, that we denote for the 

purpose of the proof as 

𝑐 = max(𝜂 + 𝜏2𝜎, 𝜉) + 𝜏max(𝜉, 𝜎 + 𝛾max). (39) 
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The proof consists in studying the inequality 𝑐 ≤ 1. The proof is divided in 4 cases. 

CASE 1. 

Assume that 𝜂 + 𝜏2𝜎 ≤ 𝜉 and 𝛾max + 𝜎 ≤ 𝜉. These assumptions hold if and only if 𝜎 ≤

min(
𝜉−𝜂

𝜏2 , 𝜉 − 𝛾max ). If such assumptions are true, then the constant (39) reads 𝑐 = 𝜉 + 𝜏𝜉. 

Therefore, by Theorem 3.1, the Jacobian has norm less than 1 whenever 𝜉 <
1

1+𝜏
. 

CASE 2. 

Assume that 𝜂 + 𝜏2𝜎 ≥ 𝜉 and 𝛾max + 𝜎 ≤ 𝜉. These assumptions hold if and only if 
𝜉−𝜂

𝜏2 ≤ 𝜎 ≤

𝜉 − 𝛾max. If such assumptions are true, then the constant (39) reads 𝑐 = 𝜂 + 𝜏2𝜎 + 𝜏𝜉. 

Therefore, by Theorem 3.1, the Jacobian has norm less than 1 whenever 𝜎 < 
1−𝜏𝜉−𝜂

𝜏2 . 

CASE 3. 

Assume that 𝜂 + 𝜏2𝜎 ≤ 𝜉 and 𝛾max + 𝜎 ≥ 𝜉. These assumptions hold if and only if 𝜉 − 𝛾max ≤

𝜎 ≤
𝜉−𝜂

𝜏2 . If such assumptions are true, then the constant (39) reads 𝑐 = 𝜉 + 𝜏(𝜎 + 𝛾max). 

Therefore, by Theorem 3.1, the Jacobian has norm less than 1 whenever 𝜎 < 
1−𝜉

𝜏
− 𝛾max. 

CASE 4. 

Assume that 𝜂 + 𝜏2𝜎 ≥ 𝜉 and 𝛾max + 𝜎 ≥ 𝜉. These assumptions hold if and only if 𝜎 ≥

max (𝜉 − 𝛾max,
𝜉−𝜂

𝜏2 ). If such assumptions are true, then the constant (39) reads 𝑐 = 𝜂 + 𝜏2𝜎 +

𝜏(𝜎 + 𝛾max). Therefore, by Theorem 3.1, the Jacobian has norm less than 1 whenever 𝜎 <
1−𝜉−𝜏𝛾max

𝜏(1+𝜏)
. 

The statement of the Proposition D. 1 organises results depending on whether 
𝜉−𝜂

𝜏2 ≤ 𝜉 −

𝛾max, or vice versa. 

# 

 

 

 

Proof of Theorem 3.3 

The proof is a straightforward application of the BauerFike's theorem [90] that we report here 

for ease of comprehension.  

Theorem E.1 (Bauer-Fike). Let D be a diagonalisable matrix, and let 𝐇 be the eigenvector 

matrix such that 𝐃 = 𝐇𝚲𝐇−1 where 𝚲 is the diagonal matrix of the eigenvalues of 𝐃. Let 𝐄 be 

an arbitrary matrix of the same dimension of 𝐃. Then, for all 𝜇 eigenvalues of 𝐃 + 𝐄, there 

exists an eigenvalue 𝜆 of 𝐃 such that 

|𝜇 − 𝜆| ≤∥ 𝐇 ∥ ∥∥𝐇−1∥∥ ∥ 𝐄 ∥. 

Let us denote 

𝐄𝑘 = [
𝜏2𝐒𝑘𝐖 𝜏(𝐈 − 𝜏diag⁡(𝜀))
𝜏𝐀𝑘 𝟎

]. 
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The norm of the matrix 𝐄𝑘 can be bounded as stated in the following lemma. 

Lemma E.2. The matrix 𝐄𝑘 admits the following upper bound 

∥∥𝐄𝑘∥∥ ≤ 𝐶. 

where 𝐶 is defined as follows 

𝐶 = 𝜏2𝜎 + 𝜏max(𝜉, 𝛾max + 𝜎). 

Proof. We decompose the matrix 𝐄𝑘 in its diagonal and antidiagonal parts, and apply Lemma 

B.1 obtaining the thesis. 

# 

Then, Theorem E. 1 in combination with Lemma E. 2 give us all the ingredients to prove 

Theorem 3.3, whose statement we report here below. 

Theorem. For all 𝜇 eigenvalues of the Jacobian of the hcoRNN and RON models there 

exists a point 𝜆 ∈ {1 − 𝜏2𝛾𝑗, 1 − 𝜏𝜀𝑗}𝑗=1

𝑁
 such that 

|𝜇 − 𝜆| ≤ 𝐶,  

where 𝐶 = 𝜏2𝜎 + 𝜏max(𝜉, 𝛾max + 𝜎). 

Proof. We decompose the Jacobian in the sum of two matrices as follows 

𝐉𝑘 = [
𝐈 − 𝜏2diag⁡(𝛾) 0

0 𝐈 − 𝜏diag⁡(𝜀)
] + [

𝜏2𝐒𝑘𝐖 𝜏(𝐈 − 𝜏diag⁡(𝜀))
𝜏𝐀𝑘 0

]. 

and apply the Bauer-Fike's Theorem E.1, choosing 𝐃 = [
𝐈 − 𝜏2diag⁡(𝛾) 𝟎

𝟎 𝐈 − 𝜏diag⁡(𝜺)
], and 

𝐄 = 𝐄𝑘 as defined in eq. (41). Noticing that D is already diagonalised, i.e. 𝐃 = 𝚲, thus the 

eigenvector matrix H is the identity matrix, and the eigenspectrum of D is the set of all the 

points {1 − 𝜏2𝛾𝑗, 1 − 𝜏𝜀𝑗}𝑗=1

𝑁
. The norm of the matrix E𝑘 is bounded with 𝐶 as stated in 

Lemma E.2. 

# 

 

Proof of Proposition 3.4 

Lemma F.1. If the input-free hcoRNN and RON models are asymptotically stable, then 𝐶 ≤

1, where 𝐶 is defined in eq. (43). 

Proof. For an input-free hcoRNN and RON it is sufficient to have a single eigenvalue outside 

the unit circle to lose asymptotic stability. By logical contraposition it follows that having all 

eigenvalues inside the unit circle is a necessary condition for asymptotic stability. We make 
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use of eq. (18) to impose all eigenvalues inside the unit circle. In particular, the inequalities to 

satisfy can be expressed in terms of 𝛾min, 𝛾max, 𝜀min, 𝜀max, and are the following 

1 − 𝜏2𝛾min + 𝐶 ≤ 1,

1 − 𝜏2𝛾max − 𝐶 ≥ −1,
1 − 𝜏𝜀min + 𝐶 ≤ 1,

1 − 𝜏𝜀max − 𝐶 ≥ −1.

 

The above inequalities can be rewritten as follows 

𝐶 ≤ 𝜏2𝛾min ≤ 𝜏2𝛾max ≤ 2 − 𝐶,
𝐶 ≤ 𝜏𝜀min ≤ 𝜏𝜀max ≤ 2 − 𝐶.

 

We deduce that a necessary condition for eqs. (50)-(51) to hold is that 𝐶 ≤ 1. In fact, if 𝐶 >

1, then 2 − 𝐶 < 𝐶, and eqs. (50)-(51) are never satisfied. 

# 

We use Lemma F. 1 to deduce necessary conditions on the hyperparameter 𝜎 for an input-

free hooRNN and RON to be asymptotically stable. 

Proposition. If the input-free hcoRNN and RON models are asymptotically stable, then either 

one of the two cases must hold true 

• if 𝜎 > 𝜉 − 𝛾max, then 𝜎 ≤
1−𝜏𝛾max

𝜏+𝜏2 . 

• if 𝜎 ≤ 𝜉 − 𝛾max, then 𝜎 ≤
1−𝜏𝜉

𝜏2 . 

Proof. If there is asymptotic stability then Lemma F. 1 implies that 𝐶 ≤ 1. 

Let's first assume that 𝜎 > 𝜉 − 𝛾max. The constant 𝐶, in such case, reads 𝐶 = 𝜏2𝜎 +

𝜏(𝛾max + 𝜎). Imposing 𝐶 ≤ 1 translates in the condition 𝜎 ≤
1−𝜏𝛾max

𝜏+𝜏2 . 

Now let's assume that 𝜎 ≤ 𝜉 − 𝛾max. In this case the constant reads 𝐶 = 𝜏2𝜎 + 𝜏𝜉. Imposing 

that 𝐶 ≤ 1 gives us the upper bound 𝜎 ≤
1−𝜏𝜉

𝜏2 . 
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# 

9. Appendix B – Details on experimental settings 

9.1 Random Oscillators Network 

We report the best hyperparameters configuration found by model selection for the 

experiments with RON. 

We used the same number of adaptive parameters for each model. This means that 

randomised models use more hidden units than the fully-trained ones, since they only have 

trainable hidden-to-output parameters. To get the total number of adaptive parameters for 

RON and ESNs, one simply needs to multiply the number of hidden units and the output size 

(number of readout units). 

RON and ESNs use 13,000 units for sMNIST and psMNIST, 5,200 units for npCIFAR-10, 

6,800 units for Lorenz96, 1,000 units for Mackey-Glass, and 100 units for Adiac and FordA. 

Fully-trained models use 256 units for sMNIST and psMNIST, 128 units for npCIFAR-10, 130 

units for Lorenz96, and 22 units for Mackey-Glass. hcoRNN, coRNN, LSTM, use respectively 

8,6,4, units for FordA, and 44,34,25, units for Adiac, this to keep the same number of trainable 

parameters. 

Fully-trained models have been trained for the same number of epochs (120) as the original 

coRNN model from [39]. Due to the high computational cost of both coRNN and hcoRNN, the 

grid search for hcoRNN was performed around the best hyper-parameters found by the 

coRNN original paper [39]. 

For Leaky ESN and RON, the recurrent weight matrix was uniformly initialised in [-2, 2], before 

scaling the spectral radius. The input-to-state matrix was uniformly initialised in [0, 1]. 

9.2 Sparse RON topologies 

Unless otherwise noted, we used 100 units in the reservoir. For the grid search on the 

validation set of each dataset, we considered 𝛾 ∈ {2,10,20}, 𝛾𝑟 ∈ {2,10}, 𝜖 ∈ {2,10,20}, 𝜖𝑟 ∈ 

{2,10}, 𝜌 ∈ {0.9,9}, 𝜈 ∈ {0.1,1,10}. The hyperparameters 𝛾𝑟 and 𝜖𝑟 denote, respectively, the 

ranges of heterogeneity of stiffness and dampening of the oscillators in the reservoir. In 

essence, once selected center values 𝛾, 𝜖 and range values 𝛾𝑟, 𝜖𝑟 for stiffness and dampening, 

we generate oscillators with random stiffness values i.i.d. uniformly sampled in [𝛾 −
𝜏𝑟

2
, 𝛾 +

𝜏𝑟

2
], 

and random dampening values i.i.d. uniformly sampled in (𝜖 −
𝜖𝑥

2
, 𝜖 +

𝜖𝑒

2
]. The RON's time-

scale 𝜏 has been selected in {0.042,0.42,4.2} for sMNIST, in {0.01,0.1,1} for Adiac and in 

{0.017,0.17,1.7} for Mackey-Glass. For the Leaky ESN we considered 𝜌 ∈ 

{0.9.0.99,0.999.9}, 𝛼 ∈ {0.001,0.01,0.1}, 𝜈 ∈ {0.1,1,10}, while, each element of the input-to-

hidden matrix 𝑊 in  and the hidden-to-hidden matrix 𝑊 is uniformly sampled in [−2,2]. The bias 

is uniformly sampled in [−1,1]. We repeated the same grid search when scaling up the number 

of hidden units. Mean and standard deviation is computed on test over 5 different random 

seeds. 

Table 13 shows the optimal hyper-parameters for all experiments in Experiments of Random 

Oscillators Networks. 
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Table 13. RON hyper-parameters 
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